ELEMENTS OF
PROGRAMMING
N

python’

AAAAAAAAA
-HSIEN L
AAAAAAAAAAA

Elements of
Programming

Interviews in Python

The Insiders’ Guide

Adnan Aziz
Tsung-Hsien Lee
Amit Prakash

ElementsOfProgramminglinterviews.com

Adnan Aziz is a Research Scientist at Facebook, where his team develops the technology that powers
everything from check-ins to Facebook Pages. Formerly, he was a professor at the Department of
Electrical and Computer Engineering at The University of Texas at Austin, where he conducted
research and taught classes in applied algorithms. He received his Ph.D. from The University of
California at Berkeley; his undergraduate degree is from Indian Institutes of Technology Kanpur.
He has worked at Google, Qualcomm, IBM, and several software startups. When not designing
algorithms, he plays with his children, Laila, Imran, and Omar.

Tsung-Hsien Lee is a Senior Software Engineer at Uber working on self-driving cars. Previously,
he worked as a Software Engineer at Google and as Software Engineer Intern at Facebook. He
received both his M.S. and undergraduate degrees from National Tsing Hua University. He has a
passion for designing and implementing algorithms. He likes to apply algorithms to every aspect
of his life. He takes special pride in helping to organize Google Code Jam 2014 and 2015.

Amit Prakash is a co-founder and CTO of ThoughtSpot, a Silicon Valley startup. Previously, hewasa
Member of the Technical Staff at Google, where he worked primarily on machine learning problems
that arise in the context of online advertising. Before that he worked at Microsoft in the web search
team. He received his Ph.D. from The University of Texas at Austin; his undergraduate degree is
from Indian Institutes of Technology Kanpur. When he is not improving business intelligence, he
indulges in his passion for puzzles, movies, travel, and adventures with Nidhi and Aanya.

Elements of Programming Interviews in Python: The Insiders’ Guide
by Adnan Aziz, Tsung-Hsien Lee, and Amit Prakash

Copyright © 2017 Adnan Aziz, Tsung-Hsien Lee, and Amit Prakash. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the authors.

The views and opinions expressed in this work are those of the authors and do not necessarily
reflect the official policy or position of their employers.

We typeset this book using IXTEX and the Memoir class. We used TikZ to draw figures. Allan Ytac
created the cover, based on a design brief we provided.

The companion website for the book includes contact information and a list of known errors for
each version of the book. If you come across an error or an improvement, please let us know.

Website: http://elementsofprogramminginterviews.com

To my father, Ishrat Aziz,
for giving me my lifelong love of learning

Adnan Aziz

To my parents, Hsien-Kuo Lee and Tseng-Hsia Li,
for the everlasting support and love they give me

Tsung-Hsien Lee

To my parents, Manju Shree and Arun Prakash,
the most loving parents I can imagine

Amit Prakash

i '-‘;/'. Table of Contents

Introduction

I The Interview

1 Getting Ready

2 Strategies For A Great Interview

3 Conducting An Interview

II Data Structures and Algorithms

4 Primitive Types

41 Computing theparityofaword
42 Swapbits.
43 Reversebits
44 Find a closest integer with the sameweight
45 Compute x X y without arithmeticaloperators
46 ComputeX/y. ot it i e e e e e
47 Computex¥ e e
48 Reversedigits
49 Checkif a decimal integerisapalindrome
410 Generate uniformrandomnumbers
4.11 Rectangleintersection. L e
5 Arrays
5.1 The Dutch national flagproblem
52 Increment an arbitrary-precisioninteger
53 Multiply two arbitrary-precisionintegers
54 Advancing throughanarray
55 Delete duplicates fromasortedarray
56 Buyandsellastockonce,
57 Buyandsellastocktwice

13

19

37
39
43
43

45

47

58 Computinganalternation 48

59 Enumerateall primeston 49
510 Permutetheelementsofanarray 50
511 Compute the next permutation 52
512 Sampleofflinedata 54
513 Sampleonlinedata 55
5.14 Compute arandom permutation 56
515 Computearandomsubset, 57
5.16 Generate nonuniformrandomnumbers 58
5.17 TheSudokucheckerproblem 60
5.18 Compute the spiral orderingofa2Darray 61
519 Rotatea2Darray 64
520 ComputerowsinPascal'sTriangle 65
Strings 67
6.1 Interconvertstringsandintegers 68
62 Baseconversion 69
6.3 Compute the spreadsheet columnencoding 70
64 Replaceandremove. e 71
6.5 Testpalindromicity o L. 72
6.6 Reverseallthewordsinasentence 73
6.7 Compute all mnemonics for a phonenumber 74
6.8 Thelook-and-sayproblem 75
6.9 Convertfrom Romantodecimal 76
6.10 ComputeallvalidIPaddresses 77
6.11 Writeastringsinusoidally 78
6.12 Implement run-lengthencoding 79
6.13 Find the first occurrenceof asubstring L. 79
Linked Lists 82
71 Mergetwosortedlists L. 84
72 Reverseasinglesublist 85
73 Testforcyclicity 86
7.4 Test for overlapping lists—lists arecycle-free 87
7.5 Test for overlapping lists—lists may havecycles 88
76 Deleteanode fromasinglylinkedlist 90
7.7 Remove the kth last element fromalist. 90
7.8 Removeduplicates fromasortedlist 91
79 Implement cyclic right shift for singly linked lists 92
7.10 Implementeven-oddmerge, 93
7.11 Test whether a singly linked list is palindromic 94
712 Implementlistpivoting L 95
713 Addlist-basedintegers 96
Stacks and Queues 97
8.1 ImplementastackwithmaxAPI 98
82 EvaluateRPNexpressions 101

8.3
8.4
8.5
8.6
8.7
8.8
8.9

Test a string over “{,},(,),[,]” for well-formedness
Normalize pathnames
Compute buildings withasunsetview
Compute binary tree nodes in order of increasingdepth
Implement acircularqueue 0 0 0 oL,
Implementaqueueusingstacks o o L,
Implement a queue withmax APL.

9 Binary Trees

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16

10 Heaps
10.1
10.2
10.3
104
10.5
10.6

Test if a binary tree is height-balanced
Test if a binary treeissymmetric
Compute the lowest common ancestor inabinarytree.
Compute the LCA when nodes have parent pointers
Sum the root-to-leaf pathsinabinarytree
Find a root to leaf path with specifiedsum
Implement an inorder traversal without recursion
Implement a preorder traversal withoutrecursion
Compute the kth node in an inorder traversal
Computethesuccessor
Implement an inorder traversal withO(1)space.
Reconstruct a binary tree from traversaldata
Reconstruct a binary tree from a preorder traversal with markers
Form a linked list from the leaves of abinarytree.
Compute the exterior of abinarytree
Compute therightsiblingtree

Mergesortedfiles
Sort an increasing-decreasingarray oL
Sortan almost-sorted array
Computethekcloseststars.
Compute the medianof onlinedata.
Compute the k largest elementsinamax-heap

11 Searching

111
11.2
11.3
114
115
11.6
11.7
11.8
119
11.10

Search a sorted array for first occurrenceofk o L
Search a sorted array for entry equal toitsindex
Search a cyclically sortedarray
Compute the integer squareroot
Compute thereal squareroot
Searchina2Dsortedarray v v it e
Find the min and max simultaneously
Find the kth largestelement
Find themissingIPaddress
Find the duplicate and missingelements

12 Hash Tables

112
114
116
117
118
119
120
121
121
122
123
124
125
127
128
128
129

132
134
135
136
137
139
140

142
145
146
147
148
149
150
152
153
155
157

159

13

14

15

121 Test for palindromic permutations
12.2 Isan anonymous letter constructible?
123 ImplementanISBNcache
124 Compute the LCA, optimizing for closeancestors
12.5 Find the nearest repeated entriesinanarray
126 Find the smallest subarray covering allvalues
12.7 Find smallest subarray sequentially covering allvalues
12.8 Find the longest subarray with distinctentries
129 Find the length of a longest contained interval
12.10 Compute all string decompositions
12.11 TesttheCollatzconjecture
12.12 Implement a hash functionforchess
Sorting

13.1 Compute the intersection of two sortedarrays
132 Mergetwosortedarrays
13.3 Remove first-nameduplicates,
134 Smallest nonconstructiblevalue 0 0oL
135 Renderacalendar e
136 Mergingintervals e
13.7 Computetheunionofintervals
13.8 Partitioning and sorting an array with many repeated entries
139 Teamphotoday—1 e
13.10 Implement a fast sorting algorithm forlists
13.11 Computeasalarythreshold
Binary Search Trees

14.1 Test if a binary tree satisfies the BST property
14.2 Find the first key greater than a givenvalueinaBST
143 Find theklargestelementsinaBST
144 Computethe LCAinaBST
14.5 Reconstructa BST from traversaldata
14.6 Find the closest entries in three sorted arrays
147 Enumerate numbers of theforma+bv2
14.8 Build a minimum height BST from asortedarray
14.9 Test if three BST nodes are totallyordered
1410 Therangelookupproblem
1411 Addcredits.
Recursion

151 TheTowersof Hanoiproblem
15.2 Generate all nonattacking placementsof n-Queens
153 Generatepermutations oo e
154 Generatethepowerset
155 Generateallsubsetsofsizek
15.6 Generate strings of matchedparens
15.7 Generate palindromic decompositions, ..

iv

180
182
183
184
185
186
188
189
191
193
194
195

197
199
201
202
203
204
206
207
210
211
212
215

158 Generatebinarytrees
159 ImplementaSudokusolver
1510 ComputeaGraycode. i e
16 Dynamic Programming
16.1 Count the number of score combinations
16.2 Compute the Levenshteindistance
16.3 Count the number of ways to traversea2Darray
164 Compute the binomial coefficients
16.5 Search forasequenceina2Darray
16,6 Theknapsackproblem
16.7 The bedbathandbeyond.comproblem
16.8 Find the minimum weight pathinatriangle.
169 Pickupcoins formaximumgain,
16.10 Count the number of movestoclimbstairs
16.11 The pretty printingproblem
16.12 Find the longest nondecreasing subsequence
17 Greedy Algorithms and Invariants
171 Compute an optimum assignmentoftasks
172 Schedule to minimize waitingtime
173 Theintervalcoveringproblem
174 The3-sumproblem
17.5 Find the majorityelement
176 Thegasupproblem,
17.7 Compute the maximum water trapped by a pair of vertical lines
17.8 Compute the largest rectangle under theskyline
18 Graphs
181 Searchamaze
182 PaintaBooleanmatrix oo
183 Computeenclosedregions
184 Deadlockdetection oo
185 Cloneagraph e
186 Makingwiredconnections o
18.7 Transformonestringtoanother
188 Teamphotoday—2
19 Parallel Computing
19.1 Implement caching for a multithreaded dictionary
19.2 Analyze two unsynchronized interleaved threads
19.3 Implement synchronization for two interleaving threads
194 Implementathreadpool
195 Deadlock e e
19.6 Thereaders-writersproblem
19.7 The readers-writers problem with write preference
198 ImplementaTimerclass

234
236
239
242
244
245
246
249
251
252
253
254
257

259
260
261
262
264
266
267
269
270

273
276
278
280
281
282
283
284
286

21

22

199

Test the Collatz conjectureinparallel

ITII Domain Specific Problems
20 Design Problems

20.1 Designaspellchecker,
20.2 Design a solution to the stemming problem
203 Plagiarismdetector
204 Pairusersbyattributes oL o oo oo oo oo
20.5 Design a system for detecting copyright infringement
206 DesignTEX oot e
20.7 Designasearchengine,
208 ImplementPageRank
209 Design TeraSortand PetaSort
20.10 Implement distributed throttling
20.11 Design a scalable priority system, ..
20.12 Create photomosaics
20.13 ImplementMileageRun
20.14 Implement CONMNEXUS v v o vt v it e e e e
20.15 Design an online advertisingsystem
20.16 Design a recommendationsystem.
20.17 Design an optimized way of distributing largefiles.
20.18 Designthe World WideWeb
20.19 Estimate the hardware cost of a photo sharingapp
Language Questions

21.1 GarbageCollection,
212 Closureo
21.3 Shallowanddeepcopy
214 Iteratorsand Generators
21.5 @decorator it e
216 Listvstuple
21.7 *argsand *KWargs it e e e e e e e e e e e e e
218 Pythoncode
219 ExceptionHandling
2110 Scoping o o e
21.11 Functionarguments
Object-Oriented Design

22.1 Template Methodvs.Strategy
222 Observerpatternt
223 Pushvs.pullobserverpattern
224 Singletonsand Flyweights
225 Adapters e
226 CreationalPatterns
22.7 Librariesand designpatterns L.

300

301
302
303
304
305
306
307
307
308
310
310
311
312
312
314
315
316
316
317
318

319
319
319
320
321
321
323
324
325
326
328
330

23 Common Tools 339

23.1 Merginginaversioncontrolsystem 339
232 HOOKS o oo e 341
233 Isscriptingmoreefficient? L L L 342
234 Polymorphism with a scriptinglanguage 343
23.5 Dependencyanalysis 343
236 ANTvs.Maven 344
237 SQLvVS.NOSQL ittt e e e e e e e e e e e e 345
238 Normalization e 345
239 SQLdesign. 346
2310 IPTCPandHTTP.o e e 346
23.11 HTTPS e e 347
2312 DNS . . . e e e 348
IV The Honors Class 349
24 Honors Class 350
24.1 Compute the greatestcommon divisor &=. 351
24.2 Find the first missing positiveentry & 352
243 Buyandsellastockktimes @ 353
244 Compute the maximum product of all entriesbutone & 354
245 Compute the longest contiguous increasing subarray & 356
246 Rotateanarray @ e 357
24.7 Identify positions attackedbyrooks &, 359
248 Justifytext @ e 360
249 Implementlistzipping & 361
24.10 Copyapostingslist & 362
24.11 Compute the longest substring with matching parens & 364
24.12 Compute the maximum of aslidingwindow & 365
2413 Implement a postorder traversal without recursion & 366
2414 Compute fairbonuses & 368
24.15 Search a sorted array of unknownlength & 370
24.16 Searchintwosortedarrays @, 372
24.17 Find the kth largest element—largen, smallk @r. 373
24.18 Find an element that appearsonlyonce @« 374
24.19 Find the line through themost points & 375
2420 Convert a sorted doubly linked listintoaBST @ 376
2421 Converta BST to asorted doubly linked list & 378
2422 MergetwoBSTs @r. e 379
24.23 Implement regular expressionmatching & 380
24.24 Synthesizeanexpression & 383
24.25 CountinVersionS &7 . . v v v v v v i e e e e e e e e e e e e e e e e 385
2426 Drawtheskyline & 386
24.27 Measure with defectivejugs & 388
24.28 Compute the maximum subarray sum in acirculararray & 390

vii

24.29 Determine thecriticalheight &
2430 Find themaximum2Dsubarray @¢
2431 Implement Huffmancoding &
2432 Trappingwater @ e e
24.33 Theheavy hitter problem &,
24.34 Find the longest subarraywhosesum<k @<
2435 Roadnetwork & i i e e e e e e
24.36 Test if arbitrage is possible & R

V Notation and Index

Notation

Index of Terms

406

407

409

Introduction

It’s not that I'm so smart, it's just that I stay with problems longer.

— A. EINSTEIN

Elements of Programming Interviews (EPI) aims to help engineers interviewing for software de-
velopment positions. The primary focus of EPI is data structures, algorithms, system design, and
problem solving. The material is largely presented through questions.

An interview problem

Let’s begin with Figure 1 below. It depicts movements in the share price of a company over 40 days.
Specifically, for each day, the chart shows the daily high and low, and the price at the opening bell
(denoted by the white square). Suppose you were asked in an interview to design an algorithm
that determines the maximum profit that could have been made by buying and then selling a single
share over a given day range, subject to the constraint that the buy and the sell have to take place
at the start of the day. (This algorithm may be needed to backtest a trading strategy.)

You may want to stop reading now, and attempt this problem on your own.

First clarify the problem. For example, you should ask for the input format. Let’s say the input
consists of three arrays L, H, and S, of nonnegative floating point numbers, representing the low,
high, and starting prices for each day. The constraint that the purchase and sale have to take place
at the start of the day means that it suffices to consider S. You may be tempted to simply return
the difference of the minimum and maximum elements in S. If you try a few test cases, you will
see that the minimum can occur after the maximum, which violates the requirement in the problem
statement—you have to buy before you can sell.

At this point, a brute-force algorithm would be appropriate. For each pair of indices i and
j > i, if S[j] — S[i] is greater than the largest difference seen so far, update the largest difference
to S[j] - S[i]. You should be able to code this algorithm using a pair of nested for-loops and test

} HHHH!

UHH”
i1t } ?
STTAITITITAE }H

Day 0 Day 5 Day 10 Day 15 Day 20 Day 25 Day 30 Day 35 Day 40

Figure 1: Share price as a function of time.

it in a matter of a few minutes. You should also derive its time complexity as a function of the
length n of the input array. The outer loop is invoked 7 — 1 times, and the ith iteration processes
n—1-ielements. Processing an element entails computing a difference, performing a compare, and
possibly updating a variable, all of which take constant time. Hence, the run time is proportional to

"n-1-i)= m, i.e., the time complexity of the brute-force algorithm is O(n?). You should
also consider the space complexity, i.e., how much memory your algorithm uses. The array itself
takes memory proportional to 1, and the additional memory used by the brute-force algorithm is a
constant independent of n—a couple of iterators and one floating point variable.

Once you have a working algorithm, try to improve upon it. Specifically, an O(n?) algorithm
is usually not acceptable when faced with large arrays. You may have heard of an algorithm
design pattern called divide-and-conquer. It yields the following algorithm for this problem. Split
S into two subarrays, S[0, |5]] and S[L}] + 1, — 1]; compute the best result for the first and second
subarrays; and combine these results. In the combine step we take the better of the results for the
two subarrays. However, we also need to consider the case where the optimum buy and sell take
place in separate subarrays. When this is the case, the buy must be in the first subarray, and the sell
in the second subarray, since the buy must happen before the sell. If the optimum buy and sell are
in different subarrays, the optimum buy price is the minimum price in the first subarray, and the
optimum sell price is in the maximum price in the second subarray. We can compute these prices
in O(n) time with a single pass over each subarray. Therefore, the time complexity T(n) for the
divide-and-conquer algorithm satisfies the recurrence relation T(n) = 2T(}) + O(n), which solves to
O(nlogn).

The divide-and-conquer algorithm is elegant and fast. Its implementation entails some corner
cases, e.g., an empty subarray, subarrays of length one, and an array in which the price decreases
monotonically, but it can still be written and tested by a good developer in 20-30 minutes.

Looking carefully at the combine step of the divide-and-conquer algorithm, you may have a
flash of insight. Specifically, you may notice that the maximum profit that can be made by selling
on a specific day is determined by the minimum of the stock prices over the previous days. Since
the maximum profit corresponds to selling on some day, the following algorithm correctly computes
the maximum profit. Iterate through S, keeping track of the minimum element m seen thus far.
If the difference of the current element and m is greater than the maximum profit recorded so far,
update the maximum profit. This algorithm performs a constant amount of work per array element,
leading to an O(n) time complexity. It uses two float-valued variables (the minimum element and
the maximum profit recorded so far) and an iterator, i.e., O(1) additional space. It is considerably
simpler to implement than the divide-and-conquer algorithm—a few minutes should suffice to
write and test it. Working code is presented in Solution 5.6 on Page 47.

If in a 45-60 minutes interview, you can develop the algorithm described above, implement and
test it, and analyze its complexity, you would have had a very successful interview. In particular,
you would have demonstrated to your interviewer that you possess several key skills:

— The ability to rigorously formulate real-world problems.

— The skills to solve problems and design algorithms.

— The tools to go from an algorithm to a tested program.

— The analytical techniques required to determine the computational complexity of your solu-

tion.

Book organization

Interviewing successfully is about more than being able to intelligently select data structures and
design algorithms quickly. For example, you also need to know how to identify suitable compa-

2

nies, pitch yourself, ask for help when you are stuck on an interview problem, and convey your
enthusiasm. These aspects of interviewing are the subject of Chapters 1-3, and are summarized in
Table 1.1 on Page 7.

Chapter 1 is specifically concerned with preparation. Chapter 2 discusses how you should
conduct yourself at the interview itself. Chapter 3 describes interviewing from the interviewer’s
perspective. The latter is important for candidates too, because of the insights it offers into the
decision making process.

Since not everyone will have the time to work through EPI in its entirety, we have prepared a
study guide (Table 1.2 on Page 8) to problems you should solve, based on the amount of time you
have available.

The problem chapters are organized as follows. Chapters 4-14 are concerned with basic data
structures, such as arrays and binary search trees, and basic algorithms, such as binary search
and quicksort. In our experience, this is the material that most interview questions are based on.
Chapters 15-18 cover advanced algorithm design principles, such as dynamic programming and
heuristics, as well as graphs. Chapter 19 focuses on parallel programming.

Each chapter begins with an introduction followed by problems. The introduction itself consists
of abrief review of basic concepts and terminology, followed by aboot camp. Eachboot campis (1.) a
straightforward, illustrative example that illustrates the essence of the chapter without being too
challenging; and (2.) top tips for the subject matter, presented in tabular format. For chapters where
the programming language includes features that are relevant, we present these features in list form.
This list is ordered with basic usage coming first, followed by subtler aspects. Basic usage is demon-
strated using methods calls with concrete arguments, e.g.,D = collections.OrderedDict((1,2),
(3,4)). Subtler aspects of the library, such as ways to reduce code length, underappreciated fea-
tures, and potential pitfalls, appear later in the list. Broadly speaking, the problems are ordered by
subtopic, with more commonly asked problems appearing first. Chapter 24 consists of a collection
of more challenging problems.

Domain-specific knowledge is covered in Chapters 20,21,22, and 23, which are concerned with
system design, programming language concepts, object-oriented programming, and commonly
used tools. Keep in mind that some companies do not ask these questions—you should investigate
the topics asked by companies you are interviewing at before investing too much time in them.
These problems are more likely to be asked of architects, senior developers and specialists.

The notation, specifically the symbols we use for describing algorithms, e.g.,

ni2,[a,b),(2,3,5,7),Ali, j1,[x], (1011)y, n!, {x | x% > 2}, etc., is summarized starting on Page 407. It
should be familiar to anyone with a technical undergraduate degree, but we still request you to
review it carefully before getting into the book, and whenever you have doubts about the meaning
of a symbol. Terms, e.g., BFS and dequeue, are indexed starting on Page 409.

The EPI editorial style

Solutions are based on basic concepts, such as arrays, hash tables, and binary search, used in clever
ways. Some solutions use relatively advanced machinery, e.g., Dijkstra’s shortest path algorithm.
You will encounter such problems in an interview only if you have a graduate degree or claim
specialized knowledge.

Most solutions include code snippets. Please read Section 1 on Page 11 to familiarize yourself
with the Python constructs and practices used in this book. Source code, which includes randomized
and directed test cases, can be found at the book website. Domain specific problems are conceptual
and not meant to be coded; a few algorithm design problems are also in this spirit.

One of our key design goals for EPI was to make learning easier by establishing a uniform way
in which to describe problems and solutions. We refer to our exposition style as the EPI Editorial
Style.

Problems are specified as follows:

(1.) We establish context, e.g., a real-world scenario, an example, etc.

(2.) We state the problem to be solved. Unlike a textbook, but as is true for an interview, we do
not give formal specifications, e.g., we do not specify the detailed input format or say what to
do on illegal inputs. As a general rule, avoid writing code that parses input. See Page 14 for
an elaboration.

(3.) We give a short hint—you should read this only if you get stuck. (The hint is similar to what
an interviewer will give you if you do not make progress.)

Solutions are developed as follows:

(1.) We begin a simple brute-force solution.

(2.) We then analyze the brute-force approach and try to get intuition for why it is inefficient and
where we can improve upon it, possibly by looking at concrete examples, related algorithms,
etc.

(3.) Based on these insights, we develop a more efficient algorithm, and describe it in prose.

(4.) We apply the program to a concrete input.

(5.) We give code for the key steps.

(6.) We analyze time and space complexity.

(7.) We outline variants—problems whose formulation or solution is similar to the solved problem.
Use variants for practice, and to test your understanding of the solution.

Note that exceptions exists to this style—for example a brute-force solution may not be mean-
ingful, e.g., if it entails enumerating all double-precision floating point numbers in some range. For
the chapters at the end of the book, which correspond to more advanced topics, such as Dynamic
Programming, and Graph Algorithms, we use more parsimonious presentations, e.g., we forgo
examples of applying the derived algorithm to a concrete example.

Level and prerequisites

We expect readers to be familiar with data structures and algorithms taught at the undergraduate
level. The chapters on concurrency and system design require knowledge of locks, distributed
systems, operating systems (OS), and insight into commonly used applications. Some of the
material in the later chapters, specifically dynamic programming, graphs, and greedy algorithms,
is more advanced and geared towards candidates with graduate degrees or specialized knowledge.

The review at the start of each chapter is not meant to be comprehensive and if you are not
familiar with the material, you should first study it in an algorithms textbook. There are dozens of
such texts and our preference is to master one or two good books rather than superficially sample
many. Algorithms by Dasgupta, et al. is succinct and beautifully written; Introduction to Algorithms
by Cormen, et al. is an amazing reference.

Reader engagement

Many of the best ideas in EPI came from readers like you. The study guide, ninja notation, and hints,
are a few examples of many improvements that were brought about by our readers. The companion
website, elementsofprogramminginterviews.com, includes a Stack Overflow-style discussion forum,
and links to our social media presence. It also has links blog postings, code, and bug reports. You
can always communicate with us directly—our contact information is on the website.

Part |

The Interview

CHAPTER

1

Getting Ready

Before everything else, getting ready is the secret of success.

— H. Forp

The most important part of interview preparation is knowing the material and practicing problem
solving. However, the nontechnical aspects of interviewing are also very important, and often
overlooked. Chapters 1-3 are concerned with the nontechnical aspects of interviewing, ranging
from résumé preparation to how hiring decisions are made. These aspects of interviewing are
summarized in Table 1.1 on the facing page

Study guide

Ideally, you would prepare for an interview by solving all the problems in EPI. This is doable over
12 months if you solve a problem a day, where solving entails writing a program and getting it to
work on some test cases.

Since different candidates have different time constraints, we have outlined several study sce-
narios, and recommended a subset of problems for each scenario. This information is summarized
in Table 1.2 on Page 8. The preparation scenarios we consider are Hackathon (a weekend entirely
devoted to preparation), finals cram (one week, 3-4 hours per day), term project (four weeks, 1.5-2.5
hours per day), and algorithms class (3—4 months, 1 hour per day).

A large majority of the interview questions at Google, Amazon, Microsoft, and similar companies
are drawn from the topics in Chapters 4-14. Exercise common sense when using Table 1.2, e.g., if
you are interviewing for a position with a financial firm, do more problems related to probability.

Although an interviewer may occasionally ask a question directly from EPI, you should not base
your preparation on memorizing solutions. Rote learning will likely lead to your giving a perfect
solution to the wrong problem.

Chapter 24 contains a diverse collection of challenging questions. Use them to hone your
problem solving skills, but go to them only after you have made major inroads into the earlier
chapters. If you have a graduate degree, or claim specialized knowledge, you should definitely
solve some problems from Chapter 24.

The interview lifecycle

Generally speaking, interviewing takes place in the following steps:
(1.) Identify companies that you are interested in, and, ideally, find people you know at these
companies.
(2.) Prepare your résumé using the guidelines on Page 8, and submit it via a personal contact
(preferred), or through an online submission process or a campus career fair.

Table 1.1: A summary of nontechnical aspects of interviewing

The Interview Lifecycle, on the preceding page

Identify companies, contacts
Résumé preparation

o Basic principles

o Website with links to projects

o LinkedIn profile & recommendations

Résumé submission
Mock interview practice
Phone/campus screening
On-site interview
Negotiating an offer

General Advice, on Page 16

Know the company & interviewers
Communicate clearly

Be passionate

Be honest

Stay positive

Don’t apologize

Leave perks and money out
Be well-groomed

Mind your body language

Be ready for a stress interview
Learn from bad outcomes
Negotiate the best offer

At the Interview, on Page 13

¢ Don't solve the wrong problem
Get specs & requirements
Construct sample input/output
Work on concrete examples first
Spell out the brute-force solution
Think out loud
Apply patterns
Assume valid inputs
Test for corner-cases
Use proper syntax
Manage the whiteboard
Be aware of memory management
Get function signatures right

Conducting an Interview, on Page 19

¢ Don't be indecisive

o Create a brand ambassador

o Coordinate with other interviewers

o know what to test on

o look for patterns of mistakes

Characteristics of a good problem:

¢ no single point of failure

o has multiple solutions

o covers multiple areas

o is calibrated on colleagues

o does not require unnecessary domain knowl-
edge

Control the conversation

o draw out quiet candidates

o manage verbose/overconfident candidates

Use a process for recording & scoring

Determine what training is needed

Apply the litmus test

(3.) Perform an initial phone screening, which often consists of a question-answer session over
the phone or video chat with an engineer. You may be asked to submit code via a shared
document or an online coding site such as ideone.com, collabedit.com, or coderpad.io. Don’t

(4.) Go for an on-site interview—this consists of a series of one-on-one interviews with engineers

Note that there may be variations—e.g., a company may contact you, or you may submit via
your college’s career placement center. The screening may involve a homework assignment to be
done before or after the conversation. The on-site interview may be conducted over a video chat
session. Most on-sites are half a day, but others may last the entire day. For anything involving
interaction over a network, be absolutely sure to work out logistics (a quiet place to talk with a
landline rather than a mobile, familiarity with the coding website and chat software, etc.) well in

take the screening casually—it can be extremely challenging.

and managers, and a conversation with your Human Resources (HR) contact.
(5.) Receive offers—these are usually a starting point for negotiations.

advance.

Table 1.2: First review Tables 1.3 on Page 10, 1.4 on Page 11, and 1.5 on Page 11. For each chapter, first read its
introductory text. Use textbooks for reference only. Unless a problem is italicized, it entails writing code. For Scenario i,
write and test code for the problems in Columns 0 to i — 1, and pseudo-code for the problems in Column i.

Scenario 1 Scenario.2 . Scenario3 - Scenario4 -
Hackathon . Finals cram . Term project Algorithms class
3 days 7days. . . 1month 4 months - -
Co C1 C2 C3 C4

41 47 48 43,411 49

51,56 512,518 5.2,5.17 5.5,5.9 5.3,5.10,5.15
6.1 62,64 6.5,6.6 6.7,6.8 6.9, 6.11

7.1 72,73 74,77 7.10 7.11

8.1 8.6 82,87 83,88 8.4

9.1 94 9.2,9.12 9.11 9.13,9.16

10.1 10.4 10.3 10.5 10.6

11.1 114,118 11.3,11.9 11.5,11.10 11.6,11.7
12.2 123,125 121,125 12.4,12.6 12.9

131 13.2 13.5 13.7,13.10 13.8

14.1 142,143 144 14.5,14.8 14.7

15.1 15.2 15.3 154,159 15.6,15.10
le.1 16.2 16.3,16.6 16.5,16.7 16.12

17.4 17.6 17.5 17.7 17.8

18.1 18.7 18.2 18.3 18.5

19.3 19.6 19.8 19.9 20.9

20.13 20.15 20.16 20.1 20.2

We recommend that you interview at as many places as you can without it taking away from
your job or classes. The experience will help you feel more comfortable with interviewing and you
may discover you really like a company that you did not know much about.

The résumé

It always astonishes us to see candidates who’ve worked hard for at least four years in school,
and often many more in the workplace, spend 30 minutes jotting down random factoids about
themselves and calling the result a résumé.

A résumé needs to address HR staff, the individuals interviewing you, and the hiring manager.
The HR staff, who typically first review your résumé, look for keywords, so you need to be sure
you have those covered. The people interviewing you and the hiring manager need to know what
you’ve done that makes you special, so you need to differentiate yourself.

Here are some key points to keep in mind when writing a résumé:

(1.) Have a clear statement of your objective; in particular, make sure that you tailor your résumé
for a given employer. For example: My outstanding ability is developing solutions to compu-
tationally challenging problems; communicating them in written and oral form; and working
with teams to implement them. I would like to apply these abilities at XYZ.”

(2.) The most important points—the ones that differentiate you from everyone else—should come
first. People reading your résumé proceed in sequential order, so you want to impress them
with what makes you special early on. (Maintaining a logical flow, though desirable, is sec-
ondary compared to this principle.) As a consequence, you should not list your programming
languages, coursework, etc. early on, since these are likely common to everyone. You should
list significant class projects (this also helps with keywords for HR.), as well as talks/papers
you've presented, and even standardized test scores, if truly exceptional.

8

(3.) The résumé should be of a high-quality: no spelling mistakes; consistent spacings, capitaliza-
tions, numberings; and correct grammar and punctuation. Use few fonts. Portable Document
Format (PDF) is preferred, since it renders well across platforms.

(4.) Include contact information, a LinkedIn profile, and, ideally, a URL to a personal homepage
with examples of your work. These samples may be class projects, a thesis, and links to
companies and products you’'ve worked on. Include design documents as well as a link to
your version control repository.

(5.) If you can work at the company without requiring any special processing (e.g., if you have a
Green Card, and are applying for a job in the US), make a note of that.

(6.) Have friends review your résumé; they are certain to find problems with it that you missed.
It is better to get something written up quickly, and then refine it based on feedback.

(7.) A résumé does not have to be one page long—two pages are perfectly appropriate. (Over two
pages is probably not a good idea.)

(8) As a rule, we prefer not to see a list of hobbies/extracurricular activities (e.g., “reading
books”, “watching TV”, “organizing tea party activities”) unless they are really different
(e.g., “Olympic rower”) and not controversial.

Whenever possible, have a friend or professional acquaintance at the company route your résumé
to the appropriate manager/HR contact—the odds of it reaching the right hands are much higher.
At one company whose practices we are familiar with, a résumé submitted through a contact is 50
times more likely to result in a hire than one submitted online. Don’t worry about wasting your
contact’s time—employees often receive a referral bonus, and being responsible for bringing in stars
is also viewed positively.

Mock interviews

Mock interviews are a great way of preparing for an interview. Get a friend to ask you questions
(from EPI or any other source) and solve them on a whiteboard, with pen and paper, or on a shared
document. Have your friend take notes and give you feedback, both positive and negative. Make
a video recording of the interview. You will cringe as you watch it, but it is better to learn of
your mannerisms beforehand. Ask your friend to give hints when you get stuck. In addition to
sharpening your problem solving and presentation skills, the experience will help reduce anxiety at
the actual interview setting. If you cannot find a friend, you can still go through the same process,
recording yourself.

Data structures, algorithms, and logic

We summarize the data structures, algorithms, and logical principles used in this book in Tables 1.3
on the next page, 1.4 on Page 11, and 1.5 on Page 11, and highly encourage you to review them.
Don't be overly concerned if some of the concepts are new to you, as we will do a bootcamp review
for data structures and algorithms at the start of the corresponding chapters. Logical principles are
applied throughout the book, and we explain a principle in detail when we first use it. You can also
look for the highlighted page in the index to learn more about a term.

Complexity

The run time of an algorithm depends on the size of its input. A common approach to capture the
run time dependency is by expressing asymptotic bounds on the worst-case run time as a function

9

Table 1.3: Data structures

Data structure Key points

Primitive types Know how int, char, double, etc. are represented in memory
and the primitive operations on them.

Arrays Fast access for element at an index, slow lookups (unless sorted)
and insertions. Be comfortable with notions of iteration, resiz-
ing, partitioning, merging, etc.

Strings Know how strings are represented in memory. Understand
basic operators such as comparison, copying, matching, joining,
splitting, etc.

Lists Understand trade-offs with respect to arrays. Be comfortable

with iteration, insertion, and deletion within singly and dou-
bly linked lists. Know how to implement a list with dynamic
allocation, and with arrays.

Stacks and queues Recognize where last-in first-out (stack) and first-in first-out
(queue) semantics are applicable. Know array and linked list
implementations.

Binary trees Use for representing hierarchical data. Know about depth,
height, leaves, search path, traversal sequences, successor/pre-
decessor operations.

Heaps Key benefit: O(1) lookup find-max, O(logn) insertion, and
O(log n) deletion of max. Node and array representations. Min-
heap variant.

Hash tables Key benefit: O(1) insertions, deletions and lookups. Key disad-
vantages: not suitable for order-related queries; need for resiz-
ing; poor worst-case performance. Understand implementation
using array of buckets and collision chains. Know hash func-
tions for integers, strings, objects.

Binary search trees Key benefit: O(logn) insertions, deletions, lookups, find-min,
find-max, successor, predecessor when tree is height-balanced.
Understand node fields, pointer implementation. Be familiar
with notion of balance, and operations maintaining balance.

of the input size. Specifically, the run time of an algorithm on an input of size n is O (f(n)) if, for
sufficiently large n, the run time is not more than f(n) times a constant.

As an example, searching for a given integer in an unsorted array of integers of length n via
iteration has an asymptotic complexity of O(n) since in the worst-case, the given integer may not be
present.

Complexity theory is applied in a similar manner when analyzing the space requirements of
an algorithm. The space needed to read in an instance is not included; otherwise, every algo-
rithm would have O(n) space complexity. An algorithm that uses O(1) space should not perform
dynamic memory allocation (explicitly, or indirectly, e.g., through library routines). Furthermore,
the maximum depth of the function call stack should also be a constant, independent of the input.
The standard algorithm for depth-first search of a graph is an example of an algorithm that does

10

:Algorithm type -
Sorting

Recursion

Divide-and-conquer

Dynamic programming

Greedy algorithms
Invariants

Graph modeling

Principle

Concrete examples
Case analysis
Iterative refinement

Reduction

not perform any dynamic allocation, but uses the function call stack for implicit storage—its space

complexity is not O(1).

A streaming algorithm is one in which the input is presented as a sequence of items and
the algorithm makes a small number of passes over it (typically just one), using a limited amount
memory (much less than the input size) and a limited processing time per item. The best algorithms

Table 1.4: Algorithms

- Key points-

Uncover some structure by sorting the input.

If the structure of the input is defined in a recursive manner,
design a recursive algorithm that follows the input definition.

Divide the problem into two or more smaller independent sub-
problems and solve the original problem using solutions to the
subproblems.

Compute solutions for smaller instances of a given problem and
use these solutions to construct a solution to the problem. Cache
for performance.

Compute a solution in stages, making choices that are locally
optimum at each step; these choices are never undone.

Identify an invariant and use it to rule out potential solutions
that are suboptimal/dominated by other solutions.

Describe the problem using a graph and solve it using an exist-
ing graph algorithm.

Table 1.5: Logical principles

Key points
Manually solve concrete instances and then build a general so-

lution. Try small inputs, e.g., a BST containing 5-7 elements,
and extremal inputs, e.g., sorted arrays.

Split the input/execution into a number of cases and solve each
case in isolation.

Most problems can be solved using a brute-force approach. Find
such a solution and improve upon it.

Use a known solution to some other problem as a subroutine.

for performing aggregation queries on log file data are often streaming algorithms.

Language review

Programs are written and tested in Python 3.6. Most of them will work with earlier versions of
Python as well. Some of the newer language features we use are concurrent. futures for thread
pools, and the ABC for abstract base classes. The only external dependency we have is on bintrees,

which implements a balanced binary search tree (Chapter 14).

11

We review data structures in Python in the corresponding chapters. Here we describe some
Python language features that go beyond the basics that we find broadly applicable. Be sure
you are comfortable with the ideas behind these features, as well as their basic syntax and time
complexity.

e We use inner functions and lambdas, e.g., the sorting code on Page 181. You should be
especially be comfortable with lambda syntax, as well as the variable scoping rules for inner
functions and lambdas.

e We use collections.namedtuples extensively for structured data—these are more readable
than dictionaries, lists, and tuples, and less verbose than classes.

o We use the following constructs to write simpler code: all() and any(), list comprehension,
map(), functools.reduce() and zip(), and enumerate().

e The following functions from the itertools module are very useful in diverse contexts:
groupby(), accumulate(), product (), and combinations().

For a handful of problems, when presenting their solution, we also include a Pythonic solution. This
is indicated by the use of _pythonic for the suffix of the function name. These Pythonic programs
are not solutions that interviewers would expect of you—they are supposed to fill you with a sense
of joy and wonder. (If you find Pythonic solutions to problems, please share them with us!)

Best practices for interview code

Now we describe practices we use in EPI that are not suitable for production code. They are
necessitated by the finite time constraints of an interview. See Section 2 on Page 14 for more
insights.

o We make fields public, rather than use getters and setters.

e We do not protect against invalid inputs, e.g., null references, negative entries in an array
that’s supposed to be all nonnegative, input streams that contain objects that are not of the
expected type, etc.

Now we describe practices we follow in EPI which are industry-standard, but we would not

recommend for an interview.

o We follow the PEP 8 style guide, which you should review before diving into EPI. The guide is
fairly straightforward—it mostly addresses naming and spacing conventions, which should
not be a high priority when presenting your solution.

An industry best practice that we use in EPl and recommend you use in an interview is explicitly
creating classes for data clumps, i.e., groups of values that do not have any methods on them. Many
programmers would use a generic Pair or Tuple class, but we have found that this leads to confusing
and buggy programs.

Books

Our favorite introduction to Python is Severance’s “Python for Informatics: Exploring Information”,
which does a great job of covering the language constructs with examples. It is available for free
online.

Brett Slatkin’s “Effective Python” is one of the best all-round programming books we have come
across, addressing everything from the pitfalls of default arguments to concurrency patterns.

For design patterns, we like “Head First Design Patterns” by Freemanet al.. Its primary drawback
is its bulk. Note that programs for interviews are too short to take advantage of design patterns.

12

Strategies For A Great Interview

The essence of strategy is choosing what not to do.

— M. E. PorTER

The technical component of an onsite interview usually consists of three to five one-on-one in-
terviews with engineers. A typical one hour interview with a single interviewer consists of five
minutes of introductions and questions about the candidate’s résumé. This is followed by five to
fifteen minutes of questioning on basic programming concepts. The core of the interview is one
or two problems where the candidate is expected to present a detailed solution on a whiteboard,
paper, or integrated development environments (IDEs). Depending on the interviewer and the
question, the solution may be required to include syntactically correct code and tests. Junior candi-
dates should expect more emphasis on coding, and less on system design and architecture. Senior
candidates should expect more emphasis on system design and architecture, though at least one
interviewer will ask a problem that entails writing detailed code.

Approaching the problem

No matter how clever and well prepared you are, the solution to an interview problem may not
occur to you immediately. Here are some things to keep in mind when this happens.

Clarify the question: This may seem obvious but it is amazing how many interviews go badly
because the candidate spends most of his time trying to solve the wrong problem. If a question
seems exceptionally hard, you may have misunderstood it.

A good way of clarifying the question is to state a concrete instance of the problem. For example,
if the question is “find the first occurrence of a number greater than k in a sorted array”, you could
ask “if the input array is (2,20, 30) and k is 3, then are you supposed to return 1, the index of 20?”
These questions can be formalized as unit tests.

Feel free to ask the interviewer what time and space complexity he would like in your solution. If
you are told to implement an O(n) algorithm or use O(1) space, it can simplify your life considerably.
It is possible that he will refuse to specify these, or be vague about complexity requirements, but
there is no harm in asking. Even if they are evasive, you may get some clues.

Work on concrete examples: Consider the problem of determining the smallest amount of
change that you cannot make with a given set of coins, as described on Page 186. This problem
may seem difficult at first. However, if you try out the smallest amount that cannot be made with
some small examples, e.g., {1,2}, {1,3}, {1,2,4}, {1, 2, 5}, you will get the key insights: examine coins
in sorted order, and look for a large “jump”—a coin which is larger than the sum of the preceding
coins.

13

Spell out the brute-force solution: Problems that are put to you in an interview tend to have
an obvious brute-force solution that has a high time complexity compared to more sophisticated
solutions. For example, instead of trying to work out a DP solution for a problem (e.g., for
Problem 16.7 on Page 249), try all the possible configurations. Advantages to this approach include:
(1.) it helps you explore opportunities for optimization and hence reach a better solution, (2.) it gives
you an opportunity to demonstrate some problem solving and coding skills, and (3.) it establishes
that both you and the interviewer are thinking about the same problem. Be warned that this strategy
can sometimes be detrimental if it takes a long time to describe the brute-force approach.

Think out loud: One of the worst things you can do in an interview is to freeze up when solving
the problem. It is always a good idea to think out loud and stay engaged. On the one hand, this
increases your chances of finding the right solution because it forces you to put your thoughts in
a coherent manner. On the other hand, this helps the interviewer guide your thought process in
the right direction. Even if you are not able to reach the solution, the interviewer will form some
impression of your intellectual ability.

Apply patterns: Patterns—general reusable solutions to commonly occurring problems—can
be a good way to approach a baffling problem. Examples include finding a good data structure,
seeing if your problem is a good fit for a general algorithmic technique, e.g., divide-and-conquer,
recursion, or dynamic programming, and mapping the problem to a graph.

Presenting the solution

Once you have an algorithm, it is important to present it in a clear manner. Your solution will
be much simpler if you take advantage of libraries such as Java Collections, C++ STL, or Python
collections. However, it is far more important that you use the language you are most comfortable
with. Here are some things to keep in mind when presenting a solution.

Libraries: Do not reinvent the wheel (unless asked to invent it). In particular, master the
libraries, especially the data structures. For example, do not waste time and lose credibility trying
to remember how to pass an explicit comparator to a BST constructor. Remember that a hash
function should use exactly those fields which are used in the equality check. A comparison
function should be transitive.

Focus on the top-level algorithm: It’s OK to use functions that you will implement later. This
will let you focus on the main part of the algorithm, will penalize you less if you don’t complete the
algorithm. (Hash, equals, and compare functions are good candidates for deferred implementation.)
Specify that you will handle main algorithm first, then corner cases. Add TODO comments for
portions that you want to come back to.

Manage the whiteboard: You will likely use more of the board than you expect, so start at the
top-left corner. Make use of functions—skip implementing anything that’s trivial (e.g., finding the
maximum of an array) or standard (e.g., a thread pool). Best practices for coding on a whiteboard
are very different from best practices for coding on a production project. For example, don’t worry
about skipping documentation, or using the right indentation. Writing on a whiteboard is much
slower than on a keyboard, so keeping your identifiers short (our recommendation is no more than
7 characters) but recognizable is a best practice. Have a convention for identifiers, e.g., i, j, k for
array indices, A,B, C for arrays, s for string, d for dict, etc.

14

Assume valid inputs: In a production environment, it is good practice to check if inputs are
valid, e.g., that a string purporting to represent a nonnegative integer actually consists solely of
numeric characters, no flight in a timetable arrives before it departs, etc. Unless they are part of the
problem statement, in an interview setting, such checks are inappropriate: they take time to code,
and distract from the core problem. (You should clarify this assumption with the interviewer.)

Test for corner cases: For many problems, your general idea may work for most valid inputs
but there may be pathological valid inputs where your algorithm (or your implementation of it)
fails. For example, your binary search code may crash if the input is an empty array; or you may
do arithmetic without considering the possibility of overflow. It is important to systematically
consider these possibilities. If there is time, write unit tests. Small, extreme, or random inputs
make for good stimuli. Don’t forget to add code for checking the result. Occasionally, the code to
handle obscure corner cases may be too complicated to implement in an interview setting. If so,
you should mention to the interviewer that you are aware of these problems, and could address
them if required.

Syntax: Interviewers rarely penalize you for small syntax errors since modern IDE excel at
handling these details. However, lots of bad syntax may result in the impression that you have
limited coding experience. Once you are done writing your program, make a pass through it to fix
any obvious syntax errors before claiming you are done.

Candidates often tend to get function signatures wrong and it reflects poorly on them. For
example, it would be an error to write a function in C that returns an array but not its size.

Memory management: Generally speaking, it is best to avoid memory management operations
altogether. See if you can reuse space. For example, some linked list problems can be solved with
O(1) additional space by reusing existing nodes.

Your Interviewer Is Not Alan Turing: Interviewers are not capable of analyzing long programs,
particularly on a whiteboard or paper. Therefore, they ask questions whose solutions use short
programs. A good tip is that if your solution takes more than 50 lines to code in Python, it’s a sign
that you are on the wrong track, and you should reconsider your approach.

Know your interviewers & the company

It can help you a great deal if the company can share with you the background of your interviewers
in advance. You should use search and social networks to learn more about the people interviewing
you. Letting your interviewers know that you have researched them helps break the ice and forms
the impression that you are enthusiastic and will go the extra mile. For fresh graduates, it is also
important to think from the perspective of the interviewers as described in Chapter 3.

Once you ace your interviews and have an offer, you have an important decision to make—is this
the organization where you want to work? Interviews are a great time to collect this information.
Interviews usually end with the interviewers letting the candidates ask questions. You should
make the best use of this time by getting the information you would need and communicating to
the interviewer that you are genuinely interested in the job. Based on your interaction with the
interviewers, you may get a good idea of their intellect, passion, and fairness. This extends to the
team and company.

In addition to knowing your interviewers, you should know about the company vision, history,
organization, products, and technology. You should be ready to talk about what specifically appeals

15

to you, and to ask intelligent questions about the company and the job. Prepare a list of questions
in advance; it gets you helpful information as well as shows your knowledge and enthusiasm for
the organization. You may also want to think of some concrete ideas around things you could do
for the company; be careful not to come across as a pushy know-it-all.

All companies want bright and motivated engineers. However, companies differ greatly in their
culture and organization. Here is a brief classification.

Mature consumer-facing company, e.g., Google: wants candidates who understand emerging
technologies from the user’s perspective. Such companies have a deeper technology stack, much
of which is developed in-house. They have the resources and the time to train a new hire.

Enterprise-oriented company, e.g., Oracle: looks for developers familiar with how large projects
are organized, e.g., engineers who are familiar with reviews, documentation, and rigorous testing.

Government contractor, e.g., Lockheed-Martin: values knowledge of specifications and testing,
and looks for engineers who are familiar with government-mandated processes.

Startup, e.g., Uber: values engineers who take initiative and develop products on their own.
Such companies do not have time to train new hires, and tend to hire candidates who are very fast
learners or are already familiar with their technology stack, e.g., their web application framework,
machine learning system, etc.

Embedded systems/chip design company, e.g., National Instruments: wants software engi-
neers who know enough about hardware to interface with the hardware engineers. The tool chain
and development practices at such companies tend to be very mature.

General conversation

Often interviewers will ask you questions about your past projects, such as a senior design project
or an internship. The point of this conversation is to answer the following questions:

Can the candidate clearly communicate a complex idea? This is one of the most important
skills for working in an engineering team. If you have a grand idea to redesign a big system, can
you communicate it to your colleagues and bring them on board? It is crucial to practice how you
will present your best work. Being precise, clear, and having concrete examples can go a long way
here. Candidates communicating in a language that is not their first language, should take extra
care to speak slowly and make more use of the whiteboard to augment their words.

Is the candidate passionate about his work? We always want our colleagues to be excited,
energetic, and inspiring to work with. If you feel passionately about your work, and your eyes light
up when describing what you’ve done, it goes a long way in establishing you as a great colleague.
Hence, when you are asked to describe a project from the past, it is best to pick something that you
are passionate about rather than a project that was complex but did not interest you.

Is there a potential interest match with some project? The interviewer may gauge areas of
strengths for a potential project match. If you know the requirements of the job, you may want
to steer the conversation in that direction. Keep in mind that because technology changes so fast
many teams prefer a strong generalist, so don’t pigeonhole yourself.

Other advice

A bad mental and physical attitude can lead to a negative outcome. Don’t let these simple mistakes
lead to your years of preparation going to waste.

16

Be honest: Nobody wants a colleague who falsely claims to have tested code or done a code
review. Dishonesty in an interview is a fast pass to an early exit.

Remember, nothing breaks the truth more than stretching it—you should be ready to defend
anything you claim on your résumé. If your knowledge of Python extends only as far as having
cut-and-paste sample code, do not add Python to your résumé.

Similarly, if you have seen a problem before, you should say so. (Be sure that it really is the
same problem, and bear in mind you should describe a correct solution quickly if you claim to have
solved it before.) Interviewers have been known to collude to ask the same question of a candidate
to see if he tells the second interviewer about the first instance. An interviewer may feign ignorance
on a topic he knows in depth to see if a candidate pretends to know it.

Keep a positive spirit: A cheerful and optimistic attitude can go a long way. Absolutely nothing
is to be gained, and much can be lost, by complaining how difficult your journey was, how you are
not a morning person, how inconsiderate the airline/hotel/HR staff were, etc.

Don’t apologize: Candidates sometimes apologize in advance for a weak GPA, rusty coding
skills, or not knowing the technology stack. Their logic is that by being proactive they will somehow
benefit from lowered expectations. Nothing can be further from the truth. It focuses attention on
shortcomings. More generally, if you do not believe in yourself, you cannot expect others to believe
in you.

Keep money and perks out of the interview: Money is a big element in any job but it is best
left discussed with the HR division after an offer is made. The same is true for vacation time, day
care support, and funding for conference travel.

Appearance: Most software companies have a relaxed dress-code, and new graduates may
wonder if they will look foolish by overdressing. The damage done when you are too casual is
greater than the minor embarrassment you may feel at being overdressed. It is always a good idea
to err on the side of caution and dress formally for your interviews. At the minimum, be clean and
well-groomed.

Be aware of your body language: Think of a friend or coworker slouched all the time or
absentmindedly doing things that may offend others. Work on your posture, eye contact and
handshake, and remember to smile.

Stress interviews

Some companies, primarily in the finance industry, make a practice of having one of the interviewers
create a stressful situation for the candidate. The stress may be injected technically, e.g., via a ninja
problem, or through behavioral means, e.g., the interviewer rejecting a correct answer or ridiculing
the candidate. The goal is to see how a candidate reacts to such situations—does he fall apart,
become belligerent, or get swayed easily. The guidelines in the previous section should help you
through a stress interview. (Bear in mind you will not know a priori if a particular interviewer will
be conducting a stress interview.)

Learning from bad outcomes

The reality is that not every interview results in a job offer. There are many reasons for not getting
a particular job. Some are technical: you may have missed that key flash of insight, e.g., the key

17

to solving the maximum-profit on Page 1 in linear time. If this is the case, go back and solve that
problem, as well as related problems.

Often, your interviewer may have spent a few minutes looking at your résumé—this is a
depressingly common practice. This can lead to your being asked questions on topics outside of the
area of expertise you claimed on your résumé, e.g., routing protocols or Structured Query Language
(SQL). If so, make sure your résumé is accurate, and brush up on that topic for the future.

You can fail an interview for nontechnical reasons, e.g., you came across as uninterested, or you
did not communicate clearly. The company may have decided not to hire in your area, or another
candidate with similar ability but more relevant experience was hired.

You will not get any feedback from a bad outcome, so it is your responsibility to try and piece
together the causes. Remember the only mistakes are the ones you don’t learn from.

Negotiating an offer

An offer is not an offer till it is on paper, with all the details filled in. All offers are negotiable.
We have seen compensation packages bargained up to twice the initial offer, but 10-20% is more
typical. When negotiating, remember there is nothing to be gained, and much to lose, by being
rude. (Being firm is not the same as being rude.)

To get the best possible offer, get multiple offers, and be flexible about the form of your com-
pensation. For example, base salary is less flexible than stock options, sign-on bonus, relocation
expenses, and Immigration and Naturalization Service (INS) filing costs. Be concrete—instead of
just asking for more money, ask for a P% higher salary. Otherwise the recruiter will simply come
back with a small increase in the sign-on bonus and claim to have met your request.

Your HR contact is a professional negotiator, whose fiduciary duty is to the company. He will
know and use negotiating techniques such as reciprocity, getting consensus, putting words in your
mouth (“don’t you think that’s reasonable?”), as well as threats, to get the best possible deal for the
company. (This is what recruiters themselves are evaluated on internally.) The Wikipedia article on
negotiation lays bare many tricks we have seen recruiters employ.

One suggestion: stick to email, where it is harder for someone to paint you into a corner. If you
are asked for something (such as a copy of a competing offer), get something in return. Often it is
better to bypass the HR contact and speak directly with the hiring manager.

At the end of the day, remember your long term career is what counts, and joining a company
that has a brighter future (social-mobile vs. legacy enterprise), or offers a position that has more
opportunities to rise (developer vs. tester) is much more important than a 10-20% difference in
compensation.

18

CHAPTER
- Conducting An Interview

HTEE » ERRSA -
Translated—"If you know both yourself and your en-
emy, you can win numerous battles without jeopardy.”

— “The Art of War,”
Sun Tzu, 515 B.C.

In this chapter we review practices that help interviewers identify a top hire. We strongly rec-
ommend interviewees read it—knowing what an interviewer is looking for will help you present
yourself better and increase the likelihood of a successful outcome.

For someone at the beginning of their career, interviewing may feel like a huge responsibility.
Hiring a bad candidate is expensive for the organization, not just because the hire is unproductive,
but also because he is a drain on the productivity of his mentors and managers, and sets a bad
example. Firing someone is extremely painful as well as bad for to the morale of the team. On
the other hand, discarding good candidates is problematic for a rapidly growing organization.
Interviewers also have a moral responsibility not to unfairly crush the interviewee’s dreams and
aspirations.

Objective

The ultimate goal of any interview is to determine the odds that a candidate will be a successful
employee of the company. The ideal candidate is smart, dedicated, articulate, collegial, and gets
things done quickly, both as an individual and in a team. Ideally, your interviews should be
designed such that a good candidate scores 1.0 and a bad candidate scores 0.0.

One mistake, frequently made by novice interviewers, is to be indecisive. Unless the candidate
walks on water or completely disappoints, the interviewer tries not to make a decision and scores
the candidate somewhere in the middle. This means that the interview was a wasted effort.

A secondary objective of the interview process is to turn the candidate into a brand ambassador
for the recruiting organization. Even if a candidate is not a good fit for the organization, he may
know others who would be. It is important for the candidate to have an overall positive experience
during the process. It seems obvious that it is a bad idea for an interviewer to check email while
the candidate is talking or insult the candidate over a mistake he made, but such behavior is
depressingly common. Outside of a stress interview, the interviewer should work on making the
candidate feel positively about the experience, and, by extension, the position and the company.

19

One important question you should ask yourself as an interviewer is how much training time your
work environment allows. For a startup it is important that a new hire is productive from the first
week, whereas a larger organization can budget for several months of training. Consequently, in a
startup it is important to test the candidate on the specific technologies that he will use, in addition
to his general abilities.

For a larger organization, it is reasonable not to emphasize domain knowledge and instead test
candidates on data structures, algorithms, system design skills, and problem solving techniques.
The justification for this is as follows. Algorithms, data structures, and system design underlie all
software. Algorithms and data structure code is usually a small component of a system dominated
by the user interface (UI), input/output (I/O), and format conversion. It is often hidden in library
calls. However, such code is usually the crucial component in terms of performance and correctness,
and often serves to differentiate products. Furthermore, platforms and programming languages
change quickly but a firm grasp of data structures, algorithms, and system design principles, will
always be a foundational part of any successful software endeavor. Finally, many of the most
successful software companies have hired based on ability and potential rather than experience or
knowledge of specifics, underlying the effectiveness of this approach to selecting candidates.

Most big organizations have a structured interview process where designated interviewers are
responsible for probing specific areas. For example, you may be asked to evaluate the candidate on
their coding skills, algorithm knowledge, critical thinking, or the ability to design complex systems.
This book gives interviewers access to a fairly large collection of problems to choose from. When
selecting a problem keep the following in mind:

No single point of failure—if you are going to ask just one question, you should not pick a
problem where the candidate passes the interview if and only if he gets one particular insight. The
best candidate may miss a simple insight, and a mediocre candidate may stumble across the right
idea. There should be at least two or three opportunities for the candidates to redeem themselves.
For example, problems that can be solved by dynamic programming can almost always be solved
through a greedy algorithm that is fast but suboptimum or a brute-force algorithm that is slow but
optimum. In such cases, even if the candidate cannot get the key insight, he can still demonstrate
some problem solving abilities. Problem 5.6 on Page 46 exemplifies this type of question.

Multiple possible solutions—if a given problem has multiple solutions, the chances of a good
candidate coming up with a solution increases. It also gives the interviewer more freedom to steer
the candidate. A great candidate may finish with one solution quickly enough to discuss other
approaches and the trade-offs between them. For example, Problem 11.9 on Page 155 can be solved
using a hash table or a bit array; the best solution makes use of binary search.

Cover multiple areas—even if you are responsible for testing the candidate on algorithms, you
could easily pick a problem that also exposes some aspects of design and software development.
For example, Problem 19.8 on Page 298 tests candidates on concurrency as well as data structures.
Problem 5.16 on Page 58 requires knowledge of both probability and binary search.

Calibrate on colleagues—interviewers often have an incorrect notion of how difficult a problem
is for a thirty minute or one hour interview. It is a good idea to check the appropriateness of a
problem by asking one of your colleagues to solve it and seeing how much difficulty they have with

20

it.

No unnecessary domain knowledge—it is not a good idea to quiz a candidate on advanced
graph algorithms if the job does not require it and the candidate does not claim any special knowl-
edge of the field. (The exception to this rule is if you want to test the candidate’s response to
stress.)

Conducting the interview

Conducting a good interview is akin to juggling. At a high level, you want to ask your questions
and evaluate the candidate’s responses. Many things can happen in an interview that could help
you reach a decision, so it is important to take notes. At the same time, it is important to keep a
conversation going with the candidate and help him out if he gets stuck. Ideally, have a series of
hints worked out beforehand, which can then be provided progressively as needed. Coming up
with the right set of hints may require some thinking. You do not want to give away the problem,
yet find a way for the candidate to make progress. Here are situations that may throw you off:

A candidate that gets stuck and shuts up: Some candidates get intimidated by the problem, the
process, or the interviewer, and just shut up. In such situations, a candidate’s performance does
not reflect his true caliber. It is important to put the candidate at ease, e.g., by beginning with a
straightforward question, mentioning that a problem is tough, or asking them to think out loud.

A verbose candidate: Candidates who go off on tangents and keep on talking without making
progress render an interview ineffective. Again, it is important to take control of the conversation.
For example you could assert that a particular path will not make progress.

An overconfident candidate: It is common to meet candidates who weaken their case by
defending an incorrect answer. To give the candidate a fair chance, it is important to demonstrate
to him that he is making a mistake, and allow him to correct it. Often the best way of doing this is
to construct a test case where the candidate’s solution breaks down.

Scoring and reporting

At the end of an interview, the interviewers usually have a good idea of how the candidate scored.
However, it is important to keep notes and revisit them before making a final decision. Whiteboard
snapshots and samples of any code that the candidate wrote should also be recorded. You should
standardize scoring based on which hints were given, how many questions the candidate was able
to get to, etc. Although isolated minor mistakes can be ignored, sometimes when you look at all the
mistakes together, clear signs of weakness in certain areas may emerge, such as a lack of attention
to detail and unfamiliarity with a language.

When the right choice is not clear, wait for the next candidate instead of possibly making a bad
hiring decision. The litmus test is to see if you would react positively to the candidate replacing a
valuable member of your team.

21

Part Il

Data Structures and Algorithms

CHAPTER

Primitive Types

Representation is the essence of programming.

— “The Mythical Man Month,”
E P. Brooks, 1975

A program updates variables in memory according to its instructions. Variables come in types—a
type is a classification of data that spells out possible values for that type and the operations that
can be performed on it. A type can be provided by the language or defined by the programmer. In
Python everything is an object—this includes Booleans, integers, characters, etc.

Primitive types boot camp

Writing a program to count the number of bits that are set to 1 in a positive integer is a good way to

get up to speed with primitive types. The following program tests bits one-at-a-time starting with

the least-significant bit. It illustrates shifting and masking; it also shows how to avoid hard-coding

the size of the integer word.

def count_bits(x):
num_bits = @

while x:
num_bits += x & 1
x >>=1

return num_bits
Since we perform O(1) computation per bit, the time complexity is O(n), where 7 is the number of
bits needed to represent the integer, e.g., 4 bits are needed to represent 12, which is (1100); in binary.
The techniques in Solution 4.1 on the next page, which is concerned with counting the number of
bits mod 2, i.e., the parity, can be used to improve the performance of the program given above.

Know your primitive types
Python has a number of built-in types: numerics (e.g., integer), sequences (e.g., list), mappings (e.g.,
dict), as well as classes, instances and exceptions. All instances of these types are objects.

Integers in Python3 are unbounded—the maximum integer representable is a function of the
available memory. The constant sys.maxsize can be used to find the word-size; specifically, it’s

the maximum value integer that can be stored in the word, e.g., 2**63 - 1 on a 64-bit machine.
Bounds on floats are specified in sys.float_info.

e Be very familiar with the bit-wise operators such as 6&4,1]2, 8>>1, -16>>2, 1<<10, "0, 15"x.
Negative numbers are treated as their 2’s complement value. (There is no concept of an
unsigned shift in Python, since integers have infinite precision.)

23

Be very comfortable with the bitwise operators, particularly XOR.

Understand how to use masks and create them in an machine independent way.

Know fast ways to clear the lowermost set bit (and by extension, set the lowermost 0, get its
index, etc.)

Understand signedness and its implications to shifting.
Consider using a cache to accelerate operations by using it to brute-force small inputs.

Be aware that commutativity and associativity can be used to perform operations in parallel
and reorder operations.

Table 4.1: Top Tips for Primitive Types

¢ The key methods for numeric types are abs(-34.5), math.ceil(2.17), math. floor(3.14),
min(x,-4), max(3.14, y), pow(2.71, 3.14) (alternately, 2.71 ** 3.14), and
math.sqrt(225).

e Know how to interconvert integers and strings, e.g., str(42), int(’'42’), floats and strings,
eg.,str(3.14), float(’3.14’).

¢ Unlike integers, floats are not infinite precision, and it's convenient to refer to infinity as
float(’'inf’) and float(’-inf’). These values are comparable to integers, and can be used
to create psuedo max-int and pseudo min-int.

e When comparing floating point values consider using math.isclose()—it is robust, e.g.,
when comparing very large values, and can handle both absolute and relative differences.

e The key methods in random are random.randrange(28), random.randint(8,16),
random. random(), random. shuffle(A4), and random. choice(A).

4.1 COMPUTING THE PARITY OF A WORD

The parity of a binary word is 1 if the number of 1s in the word is odd; otherwise, it is 0. For
example, the parity of 1011 is 1, and the parity of 10001000 is 0. Parity checks are used to detect

single bit errors in data storage and communication. It is fairly straightforward to write code that
computes the parity of a single 64-bit word.

How would you compute the parity of a very large number of 64-bit words?
Hint: Use a lookup table, but don’t use 2% entries!

Solution: The brute-force algorithm iteratively tests the value of each bit while tracking the number
of 1s seen so far. Since we only care if the number of 1s is even or odd, we can store the number
mod 2.
def parity(x):

result = 0

while x:
result A= x & 1

24

X >=1
return result

The time complexity is O(n), where n is the word size.

We will now describe several algorithms for parity computation that are superior to the brute-
force algorithm.

The first improvement is based on erasing the lowest set bit in a word in a single operation,
thereby improving performance in the best- and average-cases. Here is a great bit-fiddling trick
which you should commit to memory: x &(x — 1) equals x with its lowest set bit erased. (Here
& is the bitwise-AND operator.) ! For example, if x = (00101100),, then x — 1 = (00101011),,
so x &(x — 1) = (00101100),&(00101011); = (00101000),. This fact can be used to reduce the time
complexity. Let k be the number of bits set to 1 in a particular word. (For example, for 10001010,
k = 3.) Then time complexity of the algorithm below is O(k).

def parity(x):
result = 0
while x:
result 4= 1
X & X - 1 # Drops the lowest set bit of x.
return result

We now consider a qualitatively different approach. The problem statement refers to computing
the parity for a very large number of words. When you have to perform a large number of parity
computations, and, more generally, any kind of bit fiddling computations, two keys to performance
are processing multiple bits at a time and caching results in an array-based lookup table.

First we demonstrate caching. Clearly, we cannot cache the parity of every 64-bit integer—we
would need 2% bits of storage, which is of the order of two exabytes. However, when computing
the parity of a collection of bits, it does not matter how we group those bits, i.e., the computation is
associative. Therefore, we can compute the parity of a 64-bit integer by grouping its bits into four
nonoverlapping 16 bit subwords, computing the parity of each subwords, and then computing the
parity of these four subresults. We choose 16 since 216 = 65536 is relatively small, which makes it
feasible to cache the parity of all 16-bit words using an array. Furthermore, since 16 evenly divides
64, the code is simpler than if we were, for example, to use 10 bit subwords.

We illustrate the approach with a lookup table for 2-bit words. The cache is (0,1,1,0)—these
are the parities of (00), (01), (10), (11), respectively. To compute the parity of (11001010) we would
compute the parities of (11), (00), (10), (10). By table lookup we see these are 0,0, 1, 1, respectively,
so the final result is the parity of 0,0,1,1 which is 0.

To lookup the parity of the first two bits in (11101010), we right shift by 6, to get (00000011), and
use this as an index into the cache. To lookup the parity of the next two bits, i.e., (10), we right shift
by 4, to get (10) in the two least-significant bit places. The right shift does not remove the leading
(11)—it results in (00001110). We cannot index the cache with this, it leads to an out-of-bounds
access. To get the last two bits after the right shift by 4, we bitwise-AND (00001110) with (00000011)
(this is the “mask” used to extract the last 2 bits). The result is (00000010). Similar masking is
needed for the two other 2-bit lookups.

1 Another key bit-fiddling trick: x & ~(x — 1) isolates the lowest bit that is 1 in x; here ~ is the bitwise complement
operator.

25

def parity(x):
MASK_SIZE = 16
BIT_MASK = OxFFFF
return (PRECOMPUTED_PARITY[x >> (3 * MASK_SIZE)] +
PRECOMPUTED_PARITY[(x >> (2 * MASK_SIZE)) & BIT_MASK] 4
PRECOMPUTED_PARITY[(x >> MASK_SIZE)
& BIT_MASK] A PRECOMPUTED_PARITY[x & BIT_MASK])

The time complexity is a function of the size of the keys used to index the lookup table. Let L be
the width of the words for which we cache the results, and n the word size. Since there are n/L
terms, the time complexity is O(n/L), assuming word-level operations, such as shifting, take O(1)
time. (This does not include the time for initialization of the lookup table.)

We can improve on the O(n) worst-case time complexity of the previous algorithms by exploiting
some simple properties of parity. Specifically, the XOR of two bits is defined to be 0 if both bits are
0 or both bits are 1; otherwise it is 1. XOR has the property of being associative, i.e., it does not
matter how we group bits, as well as commutative, i.e., the order in which we perform the XORs
does not change the result. The XOR of a group of bits is its parity. We can exploit this fact to use
the CPU’s word-level XOR instruction to process multiple bits at a time.

For example, the parity of (b, be2,...,bs, b2, b1, bp) equals the parity of the XOR of
(bes, bez, . .., b3z) and (b1, b3, ..., bo). The XOR of these two 32-bit values can be computed with a
single shift and a single 32-bit XOR instruction. We repeat the same operation on 32-, 16-, 8-, 4-,
2-, and 1-bit operands to get the final result. Note that the leading bits are not meaningful, and we
have to explicitly extract the result from the least-significant bit.

We illustrate the approach with an 8-bit word. The parity of (11010111) is the same as the parity
of (1101) XORed with (0111), i.e., of (1010). This in turn is the same as the parity of (10) XORed with
(10), i.e., of (00). The final result is the XOR of (0) with (0), i.e.,, 0. Note that the first XOR yields
(11011010), and only the last 4 bits are relevant going forward. The second XOR yields (11101100),
and only the last 2 bits are relevant. The third XOR yields (10011010). The last bit is the result, and
to extract it we have to bitwise-AND with (00000001).

def parity(x):

X A= x >> 32

>> 16

>>

>

>
n o n n

L

>>

>

>>

L I
>
- N R 0

>
]

X >>
return x & 0x1

The time complexity is O(log), where n is the word size.

Note that we can combine caching with word-level operations, e.g., by doing a lookup in the
XOR-based approach once we get to 16 bits.

The actual runtimes depend on the input data, e.g., the refinement of the brute-force algorithm
is very fast on sparse inputs. However, for random inputs, the refinement of the brute-force is
roughly 20% faster than the brute-force algorithm. The table-based approach is four times faster
still, and using associativity reduces run time by another factor of two.

26

Variant: Write expressions that use bitwise operators, equality checks, and Boolean operators to do
the following in O(1) time.

o Right propagate the rightmost set bit in x, e.g., turns (01010000); to (01011111),.

o Compute x mod a power of two, e.g., returns 13 for 77 mod 64.

o Test if x is a power of 2, i.e,, evaluates to true for x = 1,2,4,8, ..., false for all other values.

4.2 SwAP BITS

There are a number of ways in which bit manipulations can be accelerated. For example, as
described on Page 23, the expression x & (x—1) clears the lowest set bit in x, and x & ~(x—1) extracts
the lowest set bit of x. Here are a few examples: 16&(16 —1) = 0, 11&(11 — 1) = 10, 20&(20-1) = 16,
16&~(16 — 1) = 16, 11&~(11 — 1) = 1, and 20&~(20 - 1) = 4.

o|(1/0;0(|1]0]|]0]1 ojofojo0o|1j0]1}1

MSB LSB MSB LSB

(a) The 8-bit integer 73 can be viewed as array of bits, (b) The result of swapping the bits at indices 1 and 6, with
with the LSB being at index 0. the LSB being at index 0. The corresponding integer is 11.

Figure 4.1: Example of swapping a pair of bits.

A 64-bit integer can be viewed as an array of 64 bits, with the bit at index 0 corresponding to the
least significant bit (LSB), and the bit at index 63 corresponding to the most significant bit (MSB).
Implement code that takes as input a 64-bit integer and swaps the bits at indices i and j. Figure 4.1
illustrates bit swapping for an 8-bit integer.

Hint: When is the swap necessary?

Solution: A brute-force approach would be to use bitmasks to extract the ith and jth bits, saving
them to local variables. Consequently, write the saved jth bit to index i and the saved ith bit to
index j, using a combination of bitmasks and bitwise operations.

The brute-force approach works generally, e.g., if we were swapping objects stored in an array.
However, since a bit can only take two values, we can do a little better. Specifically, we first test if
the bits to be swapped differ. If they do not, the swap does not change the integer. If the bits are
different, swapping them is the same as flipping their individual values. For example in Figure 4.1,
since the bits at Index 1 and Index 6 differ, flipping each bit has the effect of a swap.

In the code below we use standard bit-fiddling idioms for testing and flipping bits. Overall, the
resulting code is slightly more succinct and efficient than the brute force approach.
def swap_bits(x, i, j):

Extract the i-th and j-th bits, and see if they differ.

if (x >> i) & 1 !'= (x >> j) & 1:
i-th and j-th bits differ. We will swap them by flipping their values.
Select the bits to flip with bit_mask. Since x%1 = 0 when x = 1 and 1
when x = 0@, we can perform the flip XOR.
bit_mask = (1 << i) | (1 << j)

X A= bit_mask
return x

27

The time complexity is O(1), independent of the word size.

4.3 REVERSE BITS

Write a program that takes a 64-bit unsigned integer and returns the 64-bit unsigned integer con-
sisting of the bits of the input in reverse order. For example, if the input is (1110000000000001), the
output should be (1000000000000111).

Hint: Use a lookup table.

Solution: If we need to perform this operation just once, there is a simple brute-force algorithm:
iterate through the 32 least significant bits of the input, and swap each with the corresponding most
significant bit, using, for example, the approach in Solution 4.2 on the preceding page.

To implement reverse when the operation is to be performed repeatedly, we look more carefully
at the structure of the input, with an eye towards using a cache. Let the input consist of the four 16-
bit integers y3, y2, y1, Yo, with y3 holding the most significant bits. Then the 16 least significant bits
in the reverse come from ys. To be precise, these bits appear in the reverse order in which they do in
y3. For example, if y3 is (1110000000000001), then the 16 LSBs of the result are (1000000000000111).

Similar to computing parity (Problem 4.1 on Page 24), a very fast way to reverse bits for 16-bit
integer when we are performing many reverses is to build an array-based lookup-table A such that
for every 16-bit integer y, A[y] holds the bit-reversal of y. We can then form the reverse of x with
the reverse of yp in the most significant bit positions, followed by the reverse of y;, followed by the
reverse of v, followed by the reverse of y3.

We illustrate the approach with 8-bit integers and 2-bit lookup table keys. The table is rev =
((00), (10), (01), (11)). If the input is (10010011), its reverse is rev(11), rev(00), rev(01), rev(10), i.e.,
(11001001)
def reverse_bits(x):

MASK_SIZE = 16

BIT_MASK = OXFFFF

return (PRECOMPUTED_REVERSE([x & BIT_MASK] << (3 * MASK_SIZE)
| PRECOMPUTED_REVERSE[(x >> MASK_SIZE) & BIT_MASK] <<
(2 * MASK_SIZE) |

PRECOMPUTED_REVERSE[(x >> (2 * MASK_SIZE)) & BIT_MASK] << MASK_SIZE
| PRECOMPUTED_ REVERSE[(X >> (3 * MASK_ SIZE)) & BIT MASK])

The time complex1ty is identical to that for Solution 4.1 on Page 24, ie, O(n/L) for n-bit integers
and L-bit cache keys.

4.4 FIND A CLOSEST INTEGER WITH THE SAME WEIGHT

Define the weight of a nonnegative integer x to be the number of bits that are set to 1 in its binary
representation. For example, since 92 in base-2 equals (1011100),, the weight of 92 is 4.

Write a program which takes as input a nonnegative integer x and returns a number y which is not
equal to x, but has the same weight as x and their difference, |y — x|, is as small as possible. You can
assume x is not 0, or all 1s. For example, if x = 6, you should return 5. You can assume the integer
fits in 64 bits.

28

Hint: Start with the least significant bit.

Solution: A brute-force approach might be to try all integers x —1,x + 1,x = 2,x + 2,..., stopping
as soon as we encounter one with the same weight at x. This performs very poorly on some inputs.
One way to see this is to consider the case where x = 23 = 8. The only numbers with a weight of
1 are powers of 2. Thus, the algorithm will try the following sequence: 7,9, 6,10,5,11, 4, stopping
at 4 (since its weight is the same as 8's weight). The algorithm tries 23-! numbers smaller than 8,
namely, 7,6,5,4, and 2>"! — 1 numbers greater than 8, namely, 9,10, 11. This example generalizes.
Suppose x = 2%0. The power of 2 nearest to 2% is 2. Therefore this computation will evaluate the
weight of all integers between 2% and 2% and between 2% and 2% + 2% - 1, i.e., over one billion
integers.

Heuristically, it is natural to focus on the LSB of the input, specifically, to swap the LSB with
rightmost bit that differs from it. This yields the correct result for some inputs, e.g., for (10), it
returns (01);, which is the closest possible. However, more experimentation shows this heuristic
does not work generally. For example, for (111); (7 in decimal) it returns (1110); which is 14 in
decimal; however, (1011); (11 in decimal) has the same weight, and is closer to (111),.

A little math leads to the correct approach. Suppose we flip the bit at index k1 and flip the bit
at index k2, k1 > k2. Then the absolute value of the difference between the original integer and the
new one is 2! — 252, To minimize this, we should make k1 as small as possible and k2 as close to k1.

Since we must preserve the weight, the bit at index k1 has to be different from the bit in k2,
otherwise the flips lead to an integer with different weight. This means the smallest k1 is the
rightmost bit that’s different from the LSB, and k2 must be the very next bit. In summary, the correct
approach is to swap the two rightmost consecutive bits that differ.
def closest_int_same_bit_count(x):

NUM_UNSIGNED_BITS = 64
for i in range (NUM_UNSIGNED_BITS - 1):
if (x> i) &1 != (x> {H+ D) &1:

X A= (1 << i) | (1 << (1 + 1)) # Swaps bit-i and bit-(i + 1).
return x

Raise error if all bits of x are 0 or 1.
raise ValueError(’'All bits are 6 or 1’)

The time complexity is O(n), where n is the integer width.

Variant: Solve the same problem in O(1) time and space.

4.5 COMPUTE X X ¥ WITHOUT ARITHMETICAL OPERATORS

Sometimes the processors used in ultra low-power devices such as hearing aids do not have
dedicated hardware for performing multiplication. A program that needs to perform multiplication
must do so explicitly using lower-level primitives.

Write a program that multiplies two nonnegative integers. The only operators you are allowed to
use are

e assignment,

e the bitwise operators », «, |, & ~, " and

29

o equality checks and Boolean combinations thereof.
You may use loops and functions that you write yourself. These constraints imply, for example,
that you cannot use increment or decrement, or test if x < y.

Hint: Add using bitwise operations; multiply using shift-and-add.

Solution: A brute-force approach would be to perform repeated addition, i.e., initialize the result
to 0 and then add x to it y times. For example, to form 5 x 3, we would start with 0 and repeatedly
add 5,i.e., form 0 + 5,5 + 5,10 + 5. The time complexity is very high—as much as O(2"), where n is
the number of bits in the input, and it still leaves open the problem of adding numbers without the
presence of an add instruction.

The algorithm taught in grade-school for decimal multiplication does not use repeated
addition—it uses shift and add to achieve a much better time complexity. We can do the same
with binary numbers—to multiply x and y we initialize the result to 0 and iterate through the bits
of x, adding 2y to the result if the kth bit of x is 1.

The value 2*y can be computed by left-shifting y by k. Since we cannot use add directly, we must
implement it. We apply the grade-school algorithm for addition to the binary case, i.e., compute
the sum bit-by-bit, and “rippling” the carry along.

As an example, we show how to multiply 13 = (1101); and 9 = (1001); using the algorithm
described above. In the first iteration, since the LSB of 13 is 1, we set the result to (1001);. The
second bit of (1101); is 0, so we move on to the third bit. This bit is 1, so we shift (1001); to the
left by 2 to obtain (100100),, which we add to (1001), to get (101101),. The fourth and final bit of
(1101); is 1, so we shift (1001), to the left by 3 to obtain (1001000),, which we add to (101101), to get
(1110101), = 117.

Each addition is itself performed bit-by-bit. For example, when adding (101101), and (1001000),,
the LSB of the result is 1 (since exactly one of the two LSBs of the operands is 1). The next bit is 0
(since both the next bits of the operands are 0). The next bit is 1 (since exactly one of the next bits of
the operands is 1). The next bit is 0 (since both the next bits of the operands are 1). We also “carry” a
1 to the next position. The next bit is 1 (since the carry-in is 1 and both the next bits of the operands
are 0). The remaining bits are assigned similarly.

def multiply(x, y):
def add(a, b):
running_sum, carryin, k, temp_a, temp_b =0, 0, 1, a, b
while temp_a or temp_b:
ak, bk = a &k, b &k
carryout = (ak & bk) | (ak & carryin) | (bk & carryin)
running_sum |= ak * bk * carryin
carryin, k, temp_a, temp_b = (carryout << 1, k << 1, temp_a >> 1,
temp_b >> 1)
return running_sum | carryin

running_sum = 0
while x: # Examines each bit of x.
if x & 1:
running_sum = add(running_sum, y)
X, y=x>>1, y<<1
return running_sum

The time complexity of addition is O(n), where n is the number of bits needed to represent the
operands. Since we do n additions to perform a single multiplication, the total time complexity is

on?).

4.6 CoMPUTE x/y

Given two positive integers, compute their quotient, using only the addition, subtraction, and
shifting operators.

Hint: Relate x/y to (x - y)/y.

Solution: A brute-force approach is to iteratively subtract y from x until what remains is less than
y. The number of such subtractions is exactly the quotient, x/y, and the remainder is the term that’s
less than y. The complexity of the brute-force approach is very high, e.g., wheny = land x = 231 -1,
it will take 23! - 1 jterations.

A better approach is to try and get more work done in each iteration. For example, we can
compute the largest k such that 2y < x, subtract 2*y from x, and add 2* to the quotient. For
example, if x = (1011); and y = (10),, then k = 2, since 2 x 22 < 11 and 2 x 22 > 11. We subtract
(1000), from (1011); to get (11),, add 2* = 22 = (100), to the quotient, and continue by updating x to
(11),.

The advantage of using 2y is that it can be computed very efficiently using shifting, and x is
at least halved in each iteration. If it takes n bits to represent x/y, there are O(n) iterations. If the
largest k such that 2*y < x is computed by iterating through k, each iteration has time complexity
O(n). This leads to an O(n?) algorithm.

A better way to find the largest k in each iteration is to recognize that it keeps decreasing.
Therefore, instead of testing in each iteration whether 20y, 21y, 22y, ... is less than or equal to x, after
we initially find the largest k such that 2¥y < x, in subsequent iterations we test 251y, 2¢-2y, 2k-3y,
with x.

For the example given earlier, after setting the quotient to (100); we continue with (11),. Now
the largest k such that 2¥y < (11), is 0, so we add 2° = (1), to the quotient, which is now (101),.
We continue with (11); — (10)2 = (1)2. Since (1); < y, we are done—the quotient is (101), and the
remainder is (1);.

def divide(x, y):
result, power = 0, 32
y_power = y << power
while x >= y:
while y_power > x:
y_power >>= 1
power -=1

result += 1 << power
X -= y_power
return result
In essence, the program applies the grade-school division algorithm to binary numbers. With each
iteration, we process an additional bit. Therefore, assuming individual shift and add operations
take O(1) time, the time complexity is O(n).

31

4.7 CoMpruTE XY

Write a program that takes a double x and an integer y and returns x¥. You can ignore overflow and
underflow.

Hint: Exploit mathematical properties of exponentiation.

Solution: First, assume y is nonnegative. The brute-force algorithm is to form x* = x X x, then
x> = x2 x x, and so on. This approach takes y — 1 multiplications, which is O(2"), where 7 is number
of bits needed to represent y.

The key to efficiency is to try and get more work done with each multiplication, thereby using
fewer multiplications to accomplish the same result. For example, to compute 1.1%, instead of
starting with 1.1 and multiplying by 1.1 20 times, we could multiply 1.1 by 1.1? = 1.21 10 times for
a total of 11 multiplications (one to compute 1.12, and 10 additional multiplications by 1.21). We
can do still better by computing 1.13, 1.14, etc.

When y is a power of 2, the approach that uses fewest multiplications is iterated squaring,
ie, forming x,2?,(x2)> = x4, (x*)? = x8,.... To develop an algorithm that works for general y,
it is instructive to look at the binary representation of y, as well as properties of exponentiation,
specifically x¥*¥1 = x¥% . x¥1.,

We begin with some small concrete instances, first assuming that y is nonnegative. For example,
x(1010)2 — 5(101)2+(101)2 — 4(101); 3¢ 4(101); Similarly, x(101)2 — 4(100)2+(1); — (1002 3¢ 5 = (1002 3¢ (10)2 3¢ .

Generalizing, if the least significant bit of y is 0, the result is (x¥/2)?; otherwise, it is x X (x¥/2)2.
This gives us a recursive algorithm for computing x¥ when y is nonnegative.

The only change when y is negative is replacing x by 1/x and y by —y. In the implementation
below we replace the recursion with a while loop to avoid the overhead of function calls.
def power(x, y). o o o N —

result, power = 1.0, y
ify<@:
power, x = -power, 1.0 / x
while power:
if power & 1:
result *= x
X, power = x * x, power >> 1
return result
The number of multiplications is at most twice the index of y’s MSB, implying an O(n) time
complexity.

4.8 REVERSE DIGITS

Write a program which takes an integer and returns the integer corresponding to the digits of the
input written in reverse order. For example, the reverse of 42 is 24, and the reverse of —314 is —413.

Hint: How would you solve the same problem if the input is presented as a string?

Solution: The brute-force approach is to convert the input to a string, and then compute the reverse
from the string by traversing it from back to front. For example, (1100); is the decimal number 12,
and the answer for (1100), can be computed by traversing the string “12” in reverse order.

32

Closer analysis shows that we can avoid having to form a string. Consider the input 1132. The
first digit of the result is 2, which we can obtain by taking the input mod 10. The remaining digits of
the result are the reverse of 1132/10 = 113. Generalizing, let the input be k. If k > 0, then k mod 10
is the most significant digit of the result and the subsequent digits are the reverse of . Continuing
with the example, we iteratively update the result and the input as 2 and 113, then 23 and 11, then
231 and 1, then 2311.

For general k, we record its sign, solve the problem for |k|, and apply the sign to the result.
def reverse(x): . - S

result, x_remaining = 0, abs(x)

while x_remaining:
result = result * 10 + x_remaining % 10
x_remaining //= 18

return -result if x < @ else result

The time complexity is O(n), where n is the number of digits in k.

4.9 CHECK IF A DECIMAL INTEGER IS A PALINDROME

A palindromic string is one which reads the same forwards and backwards, e.g., “redivider”. In this
problem, you are to write a program which determines if the decimal representation of an integeris a
palindromic string. For example, your program should return true for the inputs 0, 1,7, 11, 121, 333,
and 2147447412, and false for the inputs —1,12,100, and 2147483647.

Write a program that takes an integer and determines if that integer’s representation as a decimal
string is a palindrome.

Hint: It’s easy to come up with a simple expression that extracts the least significant digit. Can you find a
simple expression for the most significant digit?

Solution: First note that if the input is negative, then its representation as a decimal string cannot
be palindromic, since it begins with a —.

A brute-force approach would be to convert the input to a string and then iterate through the
string, pairwise comparing digits starting from the least significant digit and the most significant
digit, and working inwards, stopping if there is a mismatch. The time and space complexity are
O(n), where n is the number of digits in the input.

We can avoid the O(n) space complexity used by the string representation by directly extracting
the digits from the input. The number of digits, 7, in the input’s string representation is the log
(base 10) of the input value, x. To be precise, n = |log,, x| + 1. Therefore, the least significant digit
is x mod 10, and the most significant digit is x/10"1. In the program below, we iteratively compare
the most and least significant digits, and then remove them from the input. For example, if the
input is 151751, we would compare the leading and trailing digits, 1 and 1. Since these are equal,
we update the value to 5175. The leading and trailing digits are equal, so we update to 17. Now
the leading and trailing are unequal, so we return false. If instead the number was 157751, the final
compare would be of 7 with 7, so we would return true.
defls_pah:.nd-rome_number (X)Z S

if x <= 0:

33

return x ==

num_digits = math.floor(math.logl®(x)) + 1
msd_mask = 10**(num_digits - 1)
for i in range(num_digits // 2):
if x // msd_mask != x % 10:
return False
x %= msd_mask # Remove the most significant digit of x.
x //= 10 # Remove the least significant digit of x.
msd_mask //= 1600
return True

The time complexity is O(n), and the space complexity is O(1). Alternatively, we could use Solu-
tion 4.8 on Page 32 to reverse the digits in the number and see if it is unchanged.

4.10 GENERATE UNIFORM RANDOM NUMBERS

This problem is motivated by the following scenario. Six friends have to select a designated driver
using a single unbiased coin. The process should be fair to everyone.

How would youimplement a random number generator that generates arandom integer i between a
and b, inclusive, given arandom number generator that produces zero or one with equal probability?
All values in [g, b] should be equally likely.

Hint: How would you mimic a three-sided coin with a two-sided coin?

Solution: Note that it is easy to produce arandom integer between 0 and 2‘-1, inclusive: concatenate
i bits produced by the random number generator. For example, two calls to the random number
generator will produce one of (00)2, (01)2, (10)2, (11). These four possible outcomes encode the four
integers 0, 1,2, 3, and all of them are equally likely.

For the general case, first note that it is equivalent to produce a random integer between 0 and
b —a, inclusive, since we can simply add a to the result. If b —a is equal to 2i — 1, for some i, then we
can use the approach in the previous paragraph.

If b — a is not of the form 2' — 1, we find the smallest number of the form 2' — 1 that is greater
than b — a. We generate an i-bit number as before. This i-bit number may or may not lie between 0
and b — g, inclusive. If it is within the range, we return it—all such numbers are equally likely. If it
is not within the range, we try again with i new random bits. We keep trying until we get a number
within the range.

For example, to generate a random number corresponding to a dice roll, i.e., a number between 1
and 6, we begin by making three calls to the random number generator (since 22-1 < (6—1) < 23-1).
If this yields one of (000)2, (001), (010)2, (011)2,(100)2, (101)2, we return 1 plus the corresponding
value. Observe that all six values between 1 and 6, inclusive, are equally likely to be returned. If the
three calls yields one of (110),, (111)2, we make three more calls. Note that the probability of having
to try again is 2/8, which is less than half. Since successive calls are independent, the probability
that we require many attempts diminishes very rapidly, e.g., the probability of not getting a result
in 10 attempts is (2/8)!° which is less than one-in-a-million.

def uniform_random(lower_bound, upper_bound):

34

number_of_outcomes = upper_bound - lower_bound + 1
while True:
result, i = 0, 0
while (1 << i) < number_of_outcomes:
zero_one_random() is the provided random number generator.
result = (result << 1) | zero_one_random()
i+=1
if result < number_of_outcomes:
break
return result + lower_bound
To analyze the time complexity, let t = b—a+ 1. The probability that we succeed in the first try is ¢/2'.
Since 2 is the smallest power of 2 greater than or equal to ¢, it must be less than 2. (An easy way
to see this is to consider the binary representation of ¢ and 2t.) This implies that ¢/ 20 > t/2t = (1/2).
Hence the probability that we do not succeed on the first try is 1 — #/2' < 1/2. Since successive
tries are independent, the probability that more than k tries are needed is less than or equal to
1/2*. Hence, the expected number of tries is not more than 1 + 2(1/2)! + 3(1/2)? +.... The series
converges, so the number of tries is O(1). Each try makes [log(b — a + 1)] calls to the 0/1-valued
random number generator. Assuming the 0/1-valued random number generator takes O(1) time,
the time complexity is O(log(b — a + 1)).

411 RECTANGLE INTERSECTION

This problem is concerned with rectangles whose sides are parallel to the X-axis and Y-axis. See
Figure 4.2 for examples.

i
|

i

.
e

-
i
i
1
re
e
T
i 1
)
J
A
[
|

E

Figure 4.2: Examples of XY-aligned rectangles.

Write a program which tests if two rectangles have a nonempty intersection. If the intersection is
nonempty, return the rectangle formed by their intersection.

Hint: Think of the X and Y dimensions independently.

Solution: Since the problem leaves it unspecified, we will treat the boundary as part of the rectangle.
This implies, for example, rectangles A and B in Figure 4.2 intersect.

There are many qualitatively different ways in which rectangles can intersect, e.g., they have
partial overlap (D and F), one contains the other (F and G), they share a common side (D and E),
they share a common corner (A and B), they form a cross (B and C), they form a tee (F and H), etc.
The case analysis is quite tricky.

A better approach is to focus on conditions under which it can be guaranteed that the rectangles
do not intersect. For example, the rectangle with left-most lower point (1,2), width 3, and height 4

35

cannot possibly intersect with the rectangle with left-most lower point (5, 3), width 2, and height 4,
since the X-values of the first rectangle range from 1 to 1 + 3 = 4, inclusive, and the X-values of the
second rectangle range from 5 to 5 + 2 = 7, inclusive.

Similarly, if the Y-values of the first rectangle do not intersect with the Y-values of the second
rectangle, the two rectangles cannot intersect.

Equivalently, if the set of X-values for the rectangles intersect and the set of Y-values for the
rectangles intersect, then all points with those X- and Y-values are common to the two rectangles,
so there is a nonempty intersection.

Rectangle = collections.namedtuple('Rectangle’, ('x’', 'y', 'width', ’'height’'))

def intersect_rectangle(Rl, R2):
def is_intersect(Rl, R2):
return (R1.x <= R2.x + R2.width and Rl.x + Rl.width >= R2.x
and Rl1.y <= R2.y + R2.height and Rl1.y + Rl.height >= R2.y)

if not is_intersect(Rl, R2):
return Rectangle(®, 0, -1, -1) # No intersection.
return Rectangle(
max(R1.x, R2.x),
max(Rl.y, R2.y),
min(Rl.x + Rl.width, R2.x + R2.width) - max(Rl.x, R2.x),
min(Rl.y + Rl.height, R2.y + R2.height) - max(Rl.y, R2.y))

The time complexity is O(1), since the number of operations is constant.

Variant: Given four points in the plane, how would you check if they are the vertices of a rectangle?

Variant: How would you check if two rectangles, not necessarily aligned with the X and Y axes,
intersect?

36

The machine can alter the scanned symbol and its behavior
is in part determined by that symbol, but the symbols on
the tape elsewhere do not affect the behavior of the machine.

— “Intelligent Machinery,”
A. M. TuriNg, 1948

The simplest data structure is the array, which is a contiguous block of memory. It is usually
used to represent sequences. Given an array A, A[i] denotes the (i + 1)th object stored in the
array. Retrieving and updating A[i] takes O(1) time. Insertion into a full array can be handled by
resizing, i.e., allocating a new array with additional memory and copying over the entries from the
original array. This increases the worst-case time of insertion, but if the new array has, for example,
a constant factor larger than the original array, the average time for insertion is constant since
resizing is infrequent. Deleting an element from an array entails moving all successive elements
one over to the left to fill the vacated space. For example, if the array is (2,3,5,7,9,11,13,17), then
deleting the element at index 4 results in the array (2, 3,5,7,11,13,17,0). (We do not care about the
last value.) The time complexity to delete the element at index i from an array of length n is O(n —i).
The same is true for inserting a new element (as opposed to updating an existing entry).

Array boot camp

The following problem gives good insight into working with arrays: Your input is an array of
integers, and you have to reorder its entries so that the even entries appear first. This is easy if you
use O(n) space, where n is the length of the array. However, you are required to solve it without
allocating additional storage.

When working with arrays you should take advantage of the fact that you can operate efficiently
on both ends. For this problem, we can partition the array into three subarrays: Even, Unclassified,
and Odd, appearing in that order. Initially Even and Odd are empty, and Unclassified is the entire
array. We iterate through Unclassified, moving its elements to the boundaries of the Even and Odd
subarrays via swaps, thereby expanding Even and Odd, and shrinking Unclassified.

def even_odd(A):
next_even, next_odd = 0, len(A) - 1
while next_even < next_odd:
if A[next_even] % 2 ==
next_even += 1
else:
A[next_even], A[next_odd] = A[next_odd], A[lnext_even]
next_odd -= 1

37

The additional space complexity is clearly O(1)}—a couple of variables that hold indices, and a
temporary variable for performing the swap. We do a constant amount of processing per entry, so
the time complexity is O(n).

Array problems often have simple brute-force solutions that use O(n) space, but there are subtler
solutions that use the array itself to reduce space complexity to O(1).

Filling an array from the front is slow, so see if it’s possible to write values from the back.

Instead of deleting an entry (which requires moving all entries to its left), consider overwriting
it.

When dealing with integers encoded by an array consider processing the digits from the back
of the array. Alternately, reverse the array so the least-significant digit is the first entry.

Be comfortable with writing code that operates on subarrays.

It’s incredibly easy to make off-by-1 errors when operating on arrays—reading past the last
element of an array is a common error which has catastrophic consequences.

Don’t worry about preserving the integrity of the array (sortedness, keeping equal entries
together, etc.) until it is time to return.

An array can serve as a good data structure when you know the distribution of the elements in
advance. For example, a Boolean array of length W is a good choice for representing a subset
of {0,1,..., W — 1}. (When using a Boolean array to represent a subset of {1,2,3,...,n}, allocate
an array of size n + 1 to simplify indexing.) .

When operating on 2D arrays, use parallel logic for rows and for columns.

Sometimes it’s easier to simulate the specification, than to analytically solve for the result. For
example, rather than writing a formula for the i-th entry in the spiral order for an n X n matrix,
just compute the output from the beginning.

Table 5.1: Top Tips for Arrays

Know your array libraries

Arrays in Python are provided by the list type. (The tuple type is very similar to the list type,
with the constraint that it is immutable.) The key property of a 1ist is that it is dynamically-resized,
i.e., there’s no bound as to how many values can be added to it. In the same way, values can be
deleted and inserted at arbitrary locations.

e Know the syntax for instantiating a list, eg., [3, 5, 7, 11], [1] + [8] * 16,
list(range(100)). (List comprehension, described later, is also a powerful tool for in-
stantiating arrays.)

o The basic operations are 1en(A), A.append(42), A.remove(2), and A.insert(3, 28).

o Know how to instantiate a 2D array, e.g., [[1, 2, 4], [3, 5, 7, 9], [13]].

38

o Checking if a value is present in an array is as simple as a in A. (This operation has O(n) time
complexity, where 7 is the length of the array.)

¢ Understand how copy works, i.e., the differencebetweenB = AandB = 1list(A).Understand
what a deep copy is, and how it differs from a shallow copy, i.e., how copy.copy(A) differs
from copy.deepcopy(A).

e Key methods for list include min(A), max(A), binary search for sorted lists
(bisect.bisect(A, 6), bisect.bisect_left(A, 6), and bisect.bisect_right(a, 6)),
A.reverse() (in-place), reversed(A) (returns an iterator), A.sort() (in-place), sorted(A)
(returns a copy), del A[i] (deletes the i-th element), and del A[i:j] (removes the slice).

e Slicing is a very succinct way of manipulating arrays. It can be viewed as a generalization of
indexing: the most general form of slice is A[i:j:k], with all of i, j, and k being optional. Let
A =11, 6, 3, 4, 5, 2, 7). Here are some examples of slicing: A[2:4] is [3, 4],A[2:] is
[3, 4, 5, 2, 71,A[:4)is[1, 6, 3, 4],A[:-1)is[1, 6, 3, 4, 5, 2],A[-3:]1is[5, 2,
7]1,A[-3:-11is [5, 2],A[1:5:2]is [6, 4],A[5:1:-2]is [2, 4],andA[::-1]is [7, 2, 5,
4, 3, 6, 1] (reverses list). Slicing can also be used to rotate a list: A[k:] + A[:k] rotates A
by k to the left. It can also be used to create a copy: B = A[:] does a (shallow) copy of A into
B.

e Python provides a feature called list comprehension that is a succinct way to create lists. A
list comprehension consists of (1.) an input sequence, (2.) an iterator over the input sequence,
(3.) alogical condition over the iterator (this is optional), and (4.) an expression that yields
the elements of the derived list. For example, [x**2 for x in range(6)] yields [0, 1, 4,
9, 16, 25],and [x**2 for x in range(6) if x % 2 == 0] yields [0, 4, 16].

Although list comprehensions can always be rewritten using map(), filter(), and lamb-
das, they are clearer to read, in large part because they do not need lambdas.

List comprehension supports multiple levels of looping. This can be used to create the
productof sets,e.g.,ifA = [1, 3, 5]andB = ['a’, 'b’],then[(x, y) for x in A for y
in B] creates [(1, ’a’), (1, 'b’), @3, ’'a’), (3, 'b"), (5, 'a’), (5, 'b")]. Itcan
also be used to converta 2D listtoa 1D list,e.g., ifM = [[’a’, 'b’, ’c’'], ['d’, ’e’,
'£']],x for row in M for x in rowcreates[’'a’, 'b’, 'c’, 'd’, 'e', 'f’']. Twolev-
els of looping also allow for iterating over each entry in a 2D list, e.g, if A = [[1,
2, 31, [4, 5, 6]] then [[x**2 for x in row] for row in M]yields [[1, 4, 9], [16,
25, 36]].

As a general rule, it is best to avoid more than two nested comprehensions, and use
conventional nested for loops—the indentation makes it easier to read the program.

Finally, sets and dictionaries also support list comprehensions, with the same benefits.

5.1 THe DUTCH NATIONAL FLAG PROBLEM

The quicksort algorithm for sorting arrays proceeds recursively—it selects an element (the “pivot”),
reorders the array to make all the elements less than or equal to the pivot appear first, followed by

all the elements greater than the pivot. The two subarrays are then sorted recursively.

Implemented naively, quicksort has large run times and deep function call stacks on arrays with

many duplicates because the subarrays may differ greatly in size. One solution is to reorder the

array so that all elements less than the pivot appear first, followed by elements equal to the pivot,

39

followed by elements greater than the pivot. This is known as Dutch national flag partitioning,
because the Dutch national flag consists of three horizontal bands, each in a different color.

As an example, assuming that black precedes white and white precedes gray, Figure 5.1(b) is a
valid partitioning for Figure 5.1(a). If gray precedes black and black precedes white, Figure 5.1(c)
is a valid partitioning for Figure 5.1(a).

Generalizing, suppose A = (0,1,2,0,2,1,1), and the pivot index is 3. Then A[3] = 0, so
(0,0,1,2,2,1,1) is a valid partitioning. For the same array, if the pivot index is 2, then A[2] = 2, so
the arrays (0,1,0,1,1,2,2) as well as (0,0,1, 1,1, 2, 2) are valid partitionings.

(a) Before partitioning. (b) A three-way pértitioning resembling (c) Another three-way partitioning: the
the Dutch national flag. Russian national flag.

Figure 5.1: lllustrating the Dutch national flag problem.

Write a program that takes an array A and an index i into A, and rearranges the elements such
that all elements less than A[i] (the “pivot”) appear first, followed by elements equal to the pivot,
followed by elements greater than the pivot.

Hint: Think about the partition step in quicksort.

Solution: The problem is trivial to solve with O(n) additional space, where is the length of A.
We form three lists, namely, elements less than the pivot, elements equal to the pivot, and elements
greater than the pivot. Consequently, we write these values into A. The time complexity is O(n).

We can avoid using O(n) additional space at the cost of increased time complexity as follows. In
the first stage, we iterate through A starting from index 0, then index 1, etc. In each iteration, we
seek an element smaller than the pivot—as soon as we find it, we move it to the subarray of smaller
elements via an exchange. This moves all the elements less than the pivot to the start of the array.
The second stage is similar to the first one, the difference being that we move elements greater than
the pivot to the end of the array. Code illustrating this approach is shown below.

RED, WHITE, BLUE = range(3)

def dutch_flag_partition(pivot_index, A):
pivot = A[pivot_index]
First pass: group elements smaller than pivot.
for i in range(len(A)):
Look for a smaller element.
for j in range(i + 1, len(A)):
if A[j] < pivot:
A[i], A[j] = A[j], A[i]
break

40

Second pass: group elements larger than pivot.
for i in reversed(range(len(A))):
if A[i] < pivot:
break
Look for a larger element. Stop when we reach an element less than
pivot, since first pass has moved them to the start of A.
for j in reversed(range(i)):
if A[j] > pivot:
A[i], A[j) = A[j], A[d]
break
The additional space complexity is now O(1), but the time complexity is O(n?), e.g., if i = n/2
and all elements before i are greater than A[i], and all elements after i are less than A[7]. Intuitively,
this approach has bad time complexity because in the first pass when searching for each additional
element smaller than the pivot we start from the beginning. However, there is no reason to start
from so far back—we can begin from the last location we advanced to. (Similar comments hold for
the second pass.)
To improve time complexity, we make a single pass and move all the elements less than the pivot
to the beginning. In the second pass we move the larger elements to the end. It is easy to perform
each pass in a single iteration, moving out-of-place elements as soon as they are discovered.

RED, WHITE, BLUE = range(3)

def dutch_flag_partition(pivot_index, A):
pivot = A[pivot_index]
First pass: group elements smaller than pivot.
smaller = 0
for i in range(len(A)):
if A[i] < pivot:
A[i], A[smaller] = A[smaller], A[i]
smaller += 1
Second pass: group elements larger than pivot.
larger = len(A) - 1
for i in reversed(range(len(A))):
if A[i] < pivot:
break
elif A[i] > pivot:
A[i], A[larger] = A[larger], A[i]
larger -=1

The time complexity is O(n) and the space complexity is O(1).

The algorithm we now present is similar to the one sketched above. The main difference is that
it performs classification into elements less than, equal to, and greater than the pivot in a single
pass. This reduces runtime, at the cost of a trickier implementation. We do this by maintaining four
subarrays: bottom (elements less than pivot), middle (elements equal to pivot), unclassified, and top
(elements greater than pivot). Initially, all elements are in unclassified. We iterate through elements
in unclassified, and move elements into one of bottom, middle, and top groups according to the relative
order between the incoming unclassified element and the pivot.

41

As a concrete example, suppose the array is currently A = (-3,0,-1,1,1,?,?,?,4,2), where the
pivot is 1 and ? denotes unclassified elements. There are three possibilities for the first unclassified
element, A[5].

e A[5] is less than the pivot, e.g., A[5] = —5. We exchange it with the first 1, i.e., the new array

is(-3,0,-1,-5,1,1,?,2,4,2).

e A[5] is equal to the pivot, i.e., A[5] = 1. We do not need to move it, we just advance to the next

unclassified element, i.e., the array is (-3,0,-1,1,1,1,?,?,4,2).

e A[5] is greater than the pivot, e.g., A[5] = 3. We exchange it with the last unclassified element,

i.e,, the new array is (-3,0,-1,1,1,?,7,3,4,2).
Note how the number of unclassified elements reduces by one in each case.

RED, WHITE, BLUE = range(3)

def dutch_flag_partition(pivot_index, A):
pivot = A[pivot_index]
Keep the following invariants during partitioning:
bottom group: A[:smaller].
middle group: A[smaller:equal].
unclassified group: A[equal:larger].
top group: A[larger:].
smaller, equal, larger = 0, 0, len(A)
Keep iterating as long as there is an unclassified element.,
while equal < larger:
A[equal] is the incoming unclassified element.
if A[equal] < pivot:
A[smaller], A[equal] = A[equal], A[smaller]
smaller, equal = smaller + 1, equal + 1
elif A[equal] == pivot:
equal += 1
else: # A[equal] > pivot.
larger -=
Alequal], A[larger] = A[larger], A[equall]

Each iteration decreases the size of unclassified by 1, and the time spent within each iteration is O(1),
implying the time complexity is O(n). The space complexity is clearly O(1).

Variant: Assuming that keys take one of three values, reorder the array so that all objects with the
same key appear together. The order of the subarrays is not important. For example, both Figures
5.1(b) and 5.1(c) on Page 40 are valid answers for Figure 5.1(a) on Page 40. Use O(1) additional
space and O(n) time.

Variant: Given an array A of n objects with keys that takes one of four values, reorder the array so
that all objects that have the same key appear together. Use O(1) additional space and O(n) time.

Variant: Given an array A of n objects with Boolean-valued keys, reorder the array so that objects
that have the key false appear first. Use O(1) additional space and O(n) time.

Variant: Given an array A of n objects with Boolean-valued keys, reorder the array so that objects
that have the key false appear first. The relative ordering of objects with key true should not change.
Use O(1) additional space and O(n) time.

42

5.2 INCREMENT AN ARBITRARY-PRECISION INTEGER

Write a program which takes as input an array of digits encoding a nonnegative decimal integer
D and updates the array to represent the integer D + 1. For example, if the input is (1,2,9) then
you should update the array to (1,3,0). Your algorithm should work even if it is implemented in a
language that has finite-precision arithmetic.

Hint: Experiment with concrete examples.

Solution: A brute-force approach might be to convert the array of digits to the equivalent integer,
increment that, and then convert the resulting value back to an array of digits. For example, if the
array is (1,2,9), we would derive the integer 129, add one to get 130, then extract its digits to form
(1,3,0). When implemented in a language that imposes a limit on the range of values an integer
type can take, this approach will fail on inputs that encode integers outside of that range.

We can avoid overflow issues by operating directly on the array of digits. Specifically, we mimic
the grade-school algorithm for adding integers, which entails adding digits starting from the least
significant digit, and propagate carries. If the result has an additional digit, e.g., 99 + 1 = 100, there
is not enough storage in the array for the result—we need three digits to represent 100, but the input
has only two digits.

For the given example, we would update 9 to 0 with a carry-out of 1. We update 2 to 3 (because
of the carry-in). There is no carry-out, so we stop—the result is (1,3, 0).
d?fvplus_one(A): ‘ ' -

A[-1] +=1
for i in reversed(range(l, len(A))):
if A[i] '= 16:
break
Ali] = @
Ali - 1] += 1
if A[0] == 16:
There is a carry-out, so we need one more digit to store the result.

A slick way to do this is to append a 0 at the end of the array,
and update the first entry to 1.

Al0] =1
A.append(0)

return A

The time complexity is O(n), where n is the length of A.
Variant: Write a program which takes as input two strings s and ¢ of bits encoding binary numbers
B; and B, respectively, and returns a new string of bits representing the number B, + B;.

5.3 MULTIPLY TWO ARBITRARY-PRECISION INTEGERS

Certain applications require arbitrary precision arithmetic. One way to achieve this is to use arrays
to represent integers, e.g., with one digit per array entry, with the most significant digit appearing
first, and a negative leading digit denoting a negative integer. For example, (1,9,3,7,0,7,7,2,1)
represents 193707721 and (-7,6,1,8,3,8,2,5,7, 2,8, 7) represents —761838257287.

43

Write a program that takes two arrays representing integers, and returns an integer represent-
ing their product. For example, since 193707721 x —761838257287 = —147573952589676412927, if
the inputs are (1,9,3,7,0,7,7,2,1) and (-7,6,1,8,3,8,2,5,7,2,8,7), your function should return
(-1,4,7,5,7,3,9,5,2,5,8,9,6,7,6,4,1,2,9,2,7).

Hint: Use arrays to simulate the grade-school multiplication algorithm.

Solution: As in Solution 5.2 on the preceding page, the possibility of overflow precludes us from
converting to the integer type.

Instead we can use the grade-school algorithm for multiplication which consists of multiplying
the first number by each digit of the second, and then adding all the resulting terms.

From a space perspective, it is better to incrementally add the terms rather than compute all of
them individually and then add them up. The number of digits required for the product is at most
n + m for n and m digit operands, so we use an array of size n + m for the result.

For example, when multiplying 123 with 987, we would form 7x 123 = 861, then we would form
8 x 123 x 10 = 9840, which we would add to 861 to get 10701. Then we would form 9 x 123 x 100 =
110700, which we would add to 10701 to get the final result 121401. (All numbers shown are
represented using arrays of digits.)

def multiply(numl, num2):
sign = -1 if (num1[0] <) * (num2[®] < 0) else 1
numl [0], num2[0] = abs(numl[0]), abs(num2[0])

result = [0] * (len(numl) + len(num2))
for i in reversed(range(len(numl))):
for j in reversed(range(len(num2))):
result[i + j + 1] += num1[i] * num2([j]
result[i + j] += result[i + j + 1] // 10
result[i + j + 1] %= 10

Remove the leading zeroes.

result = result[next((i for i, x in enumerate(result)
if x !'= 0), len(result)):] or [0]

return [sign * result[0]] + result([1l:]

There are m partial products, each with at most n + 1 digits. We perform O(1) operations on each
digit in each partial product, so the time complexity is O(nm).

5.4 ADVANCING THROUGH AN ARRAY

In a particular board game, a player has to try to advance through a sequence of positions. Each
position has a nonnegative integer associated with it, representing the maximum you can advance
from that position in one move. You begin at the first position, and win by getting to the last
position. For example, let A = (3,3,1,0,2,0, 1) represent the board game, i.e., the ith entry in A is
the maximum we can advance from i. Then the game can be won by the following sequence of
advances through A: take 1 step from A[0] to A[1], then 3 steps from A[1] to A[4], then 2 steps from
A[4] to A[6], which is the last position. Note that A[0] =3 > 1, A[1] =3>3,and A[4] =2 > 2,s0all
moves are valid. If A instead was (3,2,0,0,2,0,1), it would not possible to advance past position 3,
so the game cannot be won.

44

Write a program which takes an array of n integers, where A[i] denotes the maximum you can
advance from index i, and returns whether it is possible to advance to the last index starting from
the beginning of the array.

Hint: Analyze each location, starting from the beginning.

Solution: It is natural to try advancing as far as possible in each step. This approach does not
always work, because it potentially skips indices containing large entries. For example, if A =
(2,4,1,1,0,2,3), then it advances to index 2, which contains a 1, which leads to index 3, after which
it cannot progress. However, advancing to index 1, which contains a 4 lets us proceed to index 5,
from which we can advance to index 6.

The above example suggests iterating through all entries in A. As we iterate through the array,
we track the furthest index we know we can advance to. The furthest we can advance from index i
is i+ A[d]. If, for some i before the end of the array, i is the furthest index that we have demonstrated
that we can advance to, we cannot reach the last index. Otherwise, we reach the end.

For example, if A = (3,3,1,0,2,0,1), we iteratively compute the furthest we can advance to as
0,3,4,4,4,6,6,7, which reaches the last index, 6. If A = (3,2,0,0, 2,0, 1), we iteratively update the
furthest we can advance to as 0, 3,3, 3,3, after which we cannot advance, so it is not possible to
reach the last index.

The code below implements this algorithm. Note that it is robust with respect to negative entries,
since we track the maximum of how far we proved we can advance to and i + A[i].
def can_reach_end(A):

furthest_reach_so_far, last_index = 6, len(a) - 1

i=20

while i <= furthest_reach_so_far and furthest_reach_so_far < last_index:
furthest_reach_so_far = max(furthest_reach_so_far, A[i] + i)
i+=1

return furthest_reach_so_far >= last_index

The time complexity is O(n), and the additional space complexity (beyond what is used for A) is
three integer variables, i.e., O(1).

Variant: Write a program to compute the minimum number of steps needed to advance to the last
location.

5.5 DELETE DUPLICATES FROM A SORTED ARRAY

This problem is concerned with deleting repeated elements from a sorted array. For example, for
the array (2,3,5,5,7,11,11,11,13), then after deletion, the array is (2,3,5,7,11,13,0,0,0). After
deleting repeated elements, there are 6 valid entries. There are no requirements as to the values
stored beyond the last valid element.

Write a program which takes as input a sorted array and updates it so that all duplicates have been
removed and the remaining elements have been shifted left to fill the emptied indices. Return the
number of valid elements. Many languages have library functions for performing this operation—
you cannot use these functions.

Hint: There is an O(n) time and O(1) space solution.

45

Solution: Let A be the array and its length. If we allow ourselves O(n) additional space, we can
solve the problem by iterating through A and recording values that have not appeared previously
into a hash table. (The hash table is used to determine if a value is new.) New values are also
written to a list. The list is then copied back into A.

Here is a brute-force algorithm that uses O(1) additional space—iterate through A, testing if A[]
equals A[i + 1], and, if so, shift all elements at and after i + 2 to the left by one. When all entries are
equal, the number of shifts is (n — 1) + (n — 2) + --- + 2 + 1, i.e,, O(n?), where n is the length of the
array.

The intuition behind achieving a better time complexity is to reduce the amount of shifting.
Since the array is sorted, repeated elements must appear one-after-another, so we do not need an
auxiliary data structure to check if an element has appeared already. We move just one element,
rather than an entire subarray, and ensure that we move it just once.

For the given example, (2,3,5,5,7,11,11,11,13), when processing the A[3], since we already
have a 5 (which we know by comparing A[3] with A[2]), we advance to A[4]. Since this is a new
value, we move it to the first vacant entry, namely A[3]. Now the array is (2,3,5,7,7,11,11,11,13),
and the first vacant entry is A[4]. We continue from A[5].

Returns the number of valid entries after deletion.
def delete_duplicates(A):
if not A:
return 0

write_index =1
for i in range(l, len(A)):
if A[write_index - 1] != A[i]:
A[write_index] = A[i]
write_index += 1
return write_index

The time complexity is O(n), and the space complexity is O(1), since all that is needed is the two
additional variables.

Variant: Implement a function which takes as input an array and a key, and updates the array so
that all occurrences of the input key have been removed and the remaining elements have been
shifted left to fill the emptied indices. Return the number of remaining elements. There are no
requirements as to the values stored beyond the last valid element.

Variant: Write a program which takes as input a sorted array A of integers and a positive integer m,
and updates A so that if x appears m times in A it appears exactly min(2, m) times in A. The update
to A should be performed in one pass, and no additional storage may be allocated.

5.6 Buy AND SELL A STOCK ONCE

This problem is concerned with the problem of optimally buying and selling a stock once,
as described on Page 2. As an example, consider the following sequence of stock prices:
(310, 315, 275, 295, 260, 270, 290, 230, 255, 250). The maximum profit that can be made with one buy
and one sell is 30—buy at 260 and sell at 290. Note that 260 is not the lowest price, nor 290 the
highest price.

46

Write a program that takes an array denoting the daily stock price, and returns the maximum profit
that could be made by buying and then selling one share of that stock. There is no need to buy if
no profit is possible.

Hint: Identifying the minimum and maximum is not enough since the minimum may appear after the maximum
height. Focus on valid differences.

Solution: We developed several algorithms for this problem in the introduction. Specifically, on
Page 2 we showed how to compute the maximum profit by computing the difference of the current
entry with the minimum value seen so far as we iterate through the array.

For example, the array of minimum values seen so far for the given example is
(310,310, 275, 275, 260, 260, 260, 230, 230,230). The maximum profit that can be made by selling
on each specific day is the difference of the current price and the minimum seen so far, ie.,
(0,5,0,20,0,10,30,0,25,20). The maximum profit overall is 30, corresponding to buying 260 and
selling for 290.

def buy_and_sell_stock_once(prices):
min_price_so_far, max_profit = float('inf'), 0.0
for price in prices:
max_profit_sell_today = price - min_price_so_far
max_profit = max(max_profit, max_profit_sell_today)
min_price_so_far = min(min_price_so_far, price)
return max_profit

The time complexity is O(n) and the space complexity is O(1), where 7 is the length of the array.
Variant: Write a program that takes an array of integers and finds the length of a longest subarray
all of whose entries are equal.

5.7 BuY AND SELL A STOCK TWICE

The max difference problem, introduced on Page 1, formalizes the maximum profit that can be
made by buying and then selling a single share over a given day range.

Write a program that computes the maximum profit that can be made by buying and selling a share
at most twice. The second buy must be made on another date after the first sale.

Hint: What do you need to know about the first i elements when processing the (i + 1)th element?

Solution: The brute-force algorithm which examines all possible combinations of buy-sell-buy-
sell days has complexity O(n*). The complexity can be improved to O(n?) by applying the O(n)
algorithm to each pair of subarrays formed by splitting A.

The inefficiency in the above approaches comes from not taking advantage of previous com-
putations. Suppose we record the best solution for A[0, j], j between 1 and n — 1, inclusive. Now
we can do a reverse iteration, computing the best solution for a single buy-and-sell for A[j,n - 1], j
between 1 and n -1, inclusive. For each day, we combine this result with the result from the forward
iteration for the previous day—this yields the maximum profit if we buy and sell once before the
current day and once at or after the current day.

For example, suppose the input array is (12,11,13,9,12, 8,14, 13, 15). Then the most profit that
can be made with a single buy and sell by Day i (inclusive) is F = (0,0,2,2,3,3,6,6,7). Working

47

backwards, the most profit that can be made with a single buy and sell on or after Day i is
B=<(7,7,7,7,7,7,2,2,0). Tocombine these two, we compute M[i] = F[i — 1] + B[i], where F[-1]
is taken to be 0 (since the second buy must happen strictly after the first sell). This yields M =
(7,7,7,9,9,10,5, 8,6), i.e., the maximum profit is 10.
def buy_and_sell_stock_twice(prices):
max_total_profit, min_price_so_far = 0.0, float('inf’)
first_buy_sell_profits = [0] * len(prices)
Forward phase. For each day, we record maximum profit if we sell on that
day.
for i, price in enumerate(prices):
min_price_so_far = min(min_price_so_far, price)

max_total_profit = max(max_total_profit, price - min_price_so_far)
first_buy_sell_profits[i] = max_total_profit

Backward phase. For each day, find the maximum profit if we make the
second buy on that day.
max_price_so_far = float(’'-inf’)
for i, price in reversed(list(enumerate(prices[1:], 1))):
max_price_so_far = max(max_price_so_far, price)
max_total_profit = max(
max_total_profit,
max_price_so_far - price + first_buy_sell_profits[i - 1])
return max_total_profit

The time complexity is O(n), and the additional space complexity is O(n), which is the space used
to store the best solutions for the subarrays.

Variant: Solve the same problem in O(n) time and O(1) space.

5.8 COMPUTING AN ALTERNATION

Write a program that takes an array A of n numbers, and rearranges A’s elements to get a new array
B having the property that B[0] < B[1] > B[2] < B[3] > B[4] < B[5] >---.

Hint: Can you solve the problem by making local changes to A?

Solution: One straightforward solution is to sort A and interleave the bottom and top halves
of the sorted array. Alternatively, we could sort A and then swap the elements at the pairs
(A[1], A[2]), (A[3], A[4]),.... Both these approaches have the same time complexity as sorting,
namely O(n log n).

You will soon realize that it is not necessary to sort A to achieve the desired configuration—
you could simply rearrange the elements around the median, and then perform the interleaving.
Median finding can be performed in time O(n), as per Solution 11.8 on Page 153, which is the overall
time complexity of this approach.

Finally, you may notice that the desired ordering is very local, and realize that it is not necessary
to find the median. Iterating through the array and swapping A[i] and A[i + 1] when i is even and
A[i] > Ali + 1] or i is odd and A[i] < A[i + 1] achieves the desired configuration. In code:

def rearrange(A):

48

for i in range(len(A)):
A[1 i+ 2] = sorted(A[1 i+ 2]. reverse=i % 2)

This approach has time complex1ty O(n), which is the same as the approach based on median
finding. However, it is much easier to implement and operates in an online fashion, i.e., it never
needs to store more than two elements in memory or read a previous element. It nicely illustrates
algorithm design by iterative refinement of a brute-force solution.

5.9 ENUMERATE ALL PRIMES TO 1

A natural number is called a prime if it is bigger than 1 and has no divisors other than 1 and itself.

Write a program that takes an integer argument and returns all the primes between 1 and that
integer. For example, if the input is 18, you should return (2,3,5,7,11,13,17).

Hint: Exclude the multiples of primes.

Solution: The natural brute-force algorithm is to iterate over all i from 2 to n, where n is the input to
the program. For each i, we test if i is prime; if so we add it to the result. We can use “trial-division”
to test if i is prime, i.e., by dividing i by each integer from 2 to the square root of i, and checking
if the remainder is 0. (There is no need to test beyond the square root of i, since if i has a divisor
other than 1 and itself, it must also have a divisor that is no greater than its square root.) Since each
test has time complexity O(v/n), the time complexity of the entire computation is upper bounded
by O(n x y/n), i.e,, O(n®?).

Intuitively, the brute-force algorithm tests each number from 1 to n independently, and does not
exploit the fact that we need to compute all primes from 1 to n. Heuristically, a better approach is
to compute the primes and when a number is identified as a prime, to “sieve” it, i.e., remove all its
multiples from future consideration.

We use a Boolean array to encode the candidates, i.e., if the ith entry in the array is true, then i
is potentially a prime. Initially, every number greater than or equal to 2 is a candidate. Whenever
we determine a number is a prime, we will add it to the result, which is an array. The first prime
is 2. We add it to the result. None of its multiples can be primes, so remove all its multiples from
the candidate set by writing false in the corresponding locations. The next location set to true is 3.
It must be a prime since nothing smaller than it and greater than 1 is a divisor of it. As before, we
add it to result and remove its multiples from the candidate array. We continue till we get to the
end of the array of candidates.

As an example, if n = 10, the candidate array is initialized to(F, , T, T, T, T, T, T, T, T, T), where T
is true and F is false. (Entries 0 and 1 are false, since 0 and 1 are not primes.) We begin with index 2.
Since the corresponding entry is one, we add 2 to the list of primes, and sieve out its multiples. The
array isnow (F, F, T, T,F, T,F, T, F, T, F). The next nonzero entry is 3, so we add it to the list of primes,
and sieve out its multiples. The array is now (F, F, T, T, F, T, F, T, F, F, F). The next nonzero entries are
5 and 7, and nelther of them can be used to sieve out more entnes
Given n, return a11 primes up to and 1nc1ud1ng n.
def generate_primes(n):

primes = []

is_prime[p] represents if p is prime or not. Initially, set each to
true, expecting 0 and 1. Then use sieving to eliminate nonprimes.

49

is_prime = [False, False] + [True] * (n - 1)
for p in range(2, n + 1):
if is_prime[p]:

primes.append(p)

Sieve p’s multiples.

for i in range(p, n + 1, p):

is_prime[i] = False

return primes

We justified the sifting approach over the trial-division algorithm on heuristic grounds. The
time to sift out the multiples of p is proportional to n/p, so the overall time complexity is O(n/2 +
n/3 +n/5+n/7 + n/11 +...). Although not obvious, this sum asymptotically tends to nloglogn,
yielding an O(n log log) time bound. The space complexity is dominated by the storage for P, i.e.,
O(n).

The bound we gave for the trial-division approach, namely O(n*2), is based on an O(y/n) bound
for each individual test. Since most numbers are not prime, the actual time complexity of trial-
division is actually lower on average, since the test frequently early-returns false. It is known that
the time complexity of the trial-division approach is O(n*?2/(logn)?), so sieving is in fact superior
to trial-division.

We can improve runtime by sieving p’s multiples from p? instead of p, since all numbers of the
form kp, where k < p have already been sieved out. The storage can be reduced by ignoring even
numbers. The code below reflects these optimizations.

Given n, return all primes up to and including n.
def generate_primes(n):
if n < 2:
return []

size = (n - 3) // 2 + 1

primes = [2] # Stores the primes from 1 to n.

is_prime[i] represents (2i + 3) is prime or not.

Initially set each to true. Then use sieving to eliminate nonprimes.

is_prime = [True] * size

for i in range(size):

if is_prime[i]:
p=1i* 2+ 3
primes.append(p)
Sieving from pA2, where p*2 = (4i*2 + 12i + 9). The index in is_prime
is (2i42 + 61 + 3) because is_prime[i] represents 2i + 3.
#
Note that we need to use long for j because pA2 might overflow.
for j in range(2 * i**2 + 6 * i + 3, size, p):
is_prime[j] = False
return primes

The asymptotic time and space complexity are the same as that for the basic sieving approach.

5.10 PERMUTE THE ELEMENTS OF AN ARRAY

A permutation is a rearrangement of members of a sequence into a new sequence. For example,
there are 24 permutations of (g, b, ¢, d); some of these are (b,a,d, c),{d,a,b,c), and (a,d, b, c).

50

A permutation can be specified by an array P, where P[i] represents the location of the element
ati in the permutation. For example, the array (2,0, 1, 3) represents the permutation that maps the
element at location 0 to location 2, the element at location 1 to location 0, the element at location 2
to location 1, and keep the element at location 3 unchanged. A permutation can be applied to an
array to reorder the array. For example, the permutation (2,0, 1, 3) applied to A = (a, b, c,d) yields
the array (b, c,a,d).

Given an array A of n elements and a permutation P, apply P to A.

Hint: Any permutation can be viewed as a set of cyclic permutations. For an element in a cycle, how would
you identify if it has been permuted?

Solution: It is simple to apply a permutation-array to a given array if additional storage is available
to write the resulting array. We allocate a new array B of the same length, set B[P[i]] = A[i] for each
i, and then copy B to A. The time complexity is O(n), and the additional space complexity is O(n).

A key insight to improving space complexity is to decompose permutations into simpler struc-
tures which can be processed incrementally. For example, consider the permutation (3,2,1,0). To
apply it to an array A = (a,b, ¢, 5), we move the element at index 0 (a) to index 3 and the element
already at index 3 (8) to index 0. Continuing, we move the element at index 1 (b) to index 2 and
the element already at index 2 (c) to index 1. Now all elements have been moved according to the
permutation, and the result is (5, ¢, b, a).

This example generalizes: every permutation can be represented by a collection of independent
permutations, each of which is cyclic, that is, it moves all elements by a fixed offset, wrapping
around.

This is significant, because a single cyclic permutation can be performed one element at a time,
i.e., with constant additional storage. Consequently, if the permutation is described as a set of
cyclic permutations, it can easily be applied using a constant amount of additional storage by
applying each cyclic permutation one-at-a-time. Therefore, we want to identify the disjoint cycles
that constitute the permutation.

To find and apply the cycle that includes entry i we just keep going forward (from i to P[i]) till
we get back to i. After we are done with that cycle, we need to find another cycle that has not yet
been applied. It is trivial to do this by storing a Boolean for each array element.

One way to perform this without explicitly using additional O(n) storage is to use the sign bit
in the entries in the permutation-array. Specifically, we subtract n from P[i] after applying it. This
means that if an entry in P[7] is negative, we have performed the corresponding move.

For example, to apply (3,1, 2,0), we begin with the first entry, 3. We move A[0] to A[3], first
saving the original A[3]. We update the permutation to {-1,1,2,0). We move A[3] to A[0]. Since
P[0] is negative we know we are done with the cycle starting at 0. We also update the permutation
to (-1,1,2,-4). Now we examine P[1]. Since it is not negative, it means the cycle it belongs to
cannot have been applied. We continue as before.
def app1§_permutationtperﬁ, A);'~" -

for i in range(len(A)):
Check if the element at index i has not been moved by checking if
perm[i] is nonnegative.

next = i
while perm[next] >= 0:

51

A[i], A[perm[next]] = A[perm[next]], A[i]
temp = perm[next]
Subtracts len(perm) from an entry in perm to make it negative,
which indicates the corresponding move has been performed.
perm[next] -= len(perm)
next = temp

Restore perm.

perm[:] = [a + len(perm) for a in perm]

The program above will apply the permutation in O(n) time. The space complexity is O(1), assuming
we can temporarily modify the sign bit from entries in the permutation array.

If we cannot use the sign bit, we can allocate an array of n Booleans indicating whether the
element at index i has been processed. Alternatively, we can avoid using O(n) additional storage by
going from left-to-right and applying the cycle only if the current position is the leftmost position
in the cycle.
def apply_permutation(perm, A):
def cyclic_permutation(start, perm, A):

i, temp = start, A[start]
while True:
next_i = perm[i]
next_temp = A[next_i]
Alnext_i] = temp
i, temp = next_i, next_temp
if i == start:
break

for i in range(len(A)):

Traverses the cycle to see if i is the minimum element.
j = perm[i]
while j != i:

if j < i:

break

j = perm[j]
else:

cyclic_permutation(i, perm, A)

Testing whether the current position is the leftmost position entails traversing the cycle once more,
which increases the run time to O(n?).

Variant: Given an array A of integers representing a permutation, update A to represent the inverse
permutation using only constant additional storage.

5.11 COMPUTE THE NEXT PERMUTATION

There exist exactly n! permutations of n elements. These can be totally ordered using the dictionary
ordering—define permutation p to appear before permutation g if in the first place where p and
q differ in their array representations, starting from index 0, the corresponding entry for p is less
than that for q. For example, (2,0,1) < (2,1,0). Note that the permutation (0, 1,2) is the smallest
permutation under dictionary ordering, and (2,1,0) is the largest permutation under dictionary
ordering.

52

Write a program that takes as input a permutétion, and returns the next permutation under dictio-
nary ordering. If the permutation is the last permutation, return the empty array. For example, if
the input is (1,0, 3, 2) your function should return (1, 2,0, 3). If the input is (3, 2,1, 0), return ().

Hint: Study concrete examples.

Solution: A brute-force approach might be to find all permutations whose length equals that of
the input array, sort them according to the dictionary order, then find the successor of the input
permutation in that ordering. Apart from the enormous space and time complexity this entails,
simply computing all permutations of length 7 is a nontrivial problem; see Problem 15.3 on Page 222
for details.

The key insight is that we want to increase the permutation by as little as possible. The loose
analogy is how a car’s odometer increments; the difference is that we cannot change values, only
reorder them. We will use the permutation (6,2, 1,5, 4, 3,0) to develop this approach.

Specifically, we start from the right, and look at the longest decreasing suffix, which is (5,4, 3, 0)
for our example. We cannot get the next permutation just by modifying this suffix, since it is already
the maximum it can be.

Instead we look at the entry e that appears just before the longest decreasing suffix, which is 1
in this case. (If there’s no such element, i.e., the longest decreasing suffix is the entire permutation,
the permutation must be (n —1,n ~2,...,2,1,0), for which there is no next permutation.)

Observe that e must be less than some entries in the suffix (since the entry immediately after e is
greater than e). Intuitively, we should swap e with the smallest entry s in the suffix which is larger
than ¢ so as to minimize the change to the prefix (which is defined to be the part of the sequence
that appears before the suffix).

For our example, e is 1 and s is 3. Swapping s and e results in (6,2, 3,5,4,1,0).

We are not done yet—the new prefix is the smallest possible for all permutations greater than
the initial permutation, but the new suffix may not be the smallest. We can get the smallest suffix
by sorting the entries in the suffix from smallest to largest. For our working example, this yields
the suffix (0, 1,4, 5).

As an optimization, it is not necessary to call a full blown sorting algorithm on suffix. Since the
suffix was initially decreasing, and after replacing s by e it remains decreasing, reversing the suffix
has the effect of sorting it from smallest to largest.

The general algorithm for computing the next permutation is as follows:

(1.) Find k such that p[k] < p[k + 1] and entries after index k appear in decreasing order.

(2.) Find the smallest p[I] such that p[I] > p[k] (such an I must exist since p[k] < p[k + 1]).

(3.) Swap p[!] and p[k] (note that the sequence after position k remains in decreasing order).

(4.) Reverse the sequence after position k.

def next_permutation(perm):
Find the first entry from the right that is smaller than the entry
immediately after it.
inversion_point = len(perm) - 2
while (inversion_point >= 0
and perm[inversion_point] >= perm[inversion_point + 1]):
inversion_point -=1
if inversion_point == -1:
return [] # perm is the last permutation.

53

Swap the smallest entry after index inversion_point that is greater than
perm[inversion_point]. Since entries in perm are decreasing after
inversion_point, if we search in reverse order, the first entry that is
greater than perm[inversion_point] is the entry to swap with.
for i in reversed(range(inversion_point + 1, len(perm))):
if perm[i] > perm[inversion_point]:
perm[inversion_point], perm[i] = perm[i], perm[inversion_point]
break

Entries in perm must appear in decreasing order after inversion_point,

so we simply reverse these entries to get the smallest dictionary order.
perm[inversion_point + 1:] = reversed(perm[inversion_point + 1:])

return perm

Each step is an iteration through an array, so the time complexity is O(n). All that we use are a few
local variables, so the additional space complexity is O(1).

Variant: Compute the kth permutation under dictionary ordering, starting from the identity per-
mutation (which is the first permutation in dictionary ordering).

Variant: Given a permutation p, return the permutation corresponding to the previous permutation
of p under dictionary ordering.

5.12 SAMPLE OFFLINE DATA

This problem is motivated by the need for a company to select a random subset of its customers to
roll out a new feature to. For example, a social networking company may want to see the effect of
a new Ul on page visit duration without taking the chance of alienating all its users if the rollout is
unsuccessful.

Implement an algorithm that takes as input an array of distinct elements and a size, and returns
a subset of the given size of the array elements. All subsets should be equally likely. Return the
result in input array itself.

Hint: How would you construct a random subset of size k + 1 given a random subset of size k?

Solution: Let the input array be 4, its length n, and the specified size k. A naive approach is to
iterate through the input array, selecting entries with probability k/n. Although the average number
of selected entries is k, we may select more or less than k entries in this way.

Another approach is to enumerate all subsets of size k and then select one at random from
these. Since there are (}) subsets of size k, the time and space complexity are huge. Furthermore,
enumerating all subsets of size k is nontrivial (Problem 15.5 on Page 226).

The key to efficiently building a random subset of size exactly k is to first build one of size k — 1
and then adding one more element, selected randomly from the rest. The problem is trivial when
k = 1. We make one call to the random number generator, take the returned value mod n (call it),
and swap A[0] with A[r]. The entry A[0] now holds the result.

For k > 1, we begin by choosing one element at random as above and we now repeat the same
process with the n — 1 element subarray A[1,n — 1]. Eventually, the random subset occupies the
slots A[0, k — 1] and the remaining elements are in the last n — k slots.

54

Intuitively, if all subsets of size k are equally likely, then the construction process ensures that
the subsets of size k + 1 are also equally likely. A formal proof, which we do not present, uses
mathematical induction—the induction hypothesis is that every permutation of every size k subset
of A is equally likely to be in A[0, k — 1].

As a concrete example, let the input be A = (3,7, 5,11) and the size be 3. In the first iteration, we
use the random number generator to pick a random integer in the interval [0, 3]. Let the returned
random number be 2. We swap A[0] with A[2]—now the array is (5,7,3,11). Now we pick a
random integer in the interval [1,3]. Let the returned random number be 3. We swap A[1] with
A[3]—now the resulting array is (5,11, 3, 7). Now we pick a random integer in the interval [2, 3]. Let
the returned random number be 2. When we swap A[2] with itself the resulting array is unchanged.
The random subset consists of the first three entries, i.e., {5,11, 3}.

def random_sampling(k, A):

for i in range(k):
Generate a random index in [i, len(A) - 1].
r = random.randint(i, len(A) - 1)
A[il, A[r] = A[r], A[i]

The algorithm clearly runs in additional O(1) space. The time complexity is O(k) to select the
elements.

The algorithm makes k calls to the random number generator. When k is bigger than 7, we
can optimize by computing a subset of n — k elements to remove from the set. For example, when
k = n — 1, this replaces n — 1 calls to the random number generator with a single call.

Variant: The rand() function in the standard C library returns a uniformly random number in
[0, RAND_MAX — 1]. Does rand() mod n generate a number uniformly distributed in [0,7 — 1]?

5.13 SAMPLE ONLINE DATA

This problem is motivated by the design of a packet sniffer that provides a uniform sample of
packets for a network session.

Design a program that takes as input a size k, and reads packets, continuously maintaining a
uniform random subset of size k of the read packets.

Hint: Suppose you have a procedure which selects k packets from the first n > k packets as specified. How
would you deal with the (n + 1)th packet?

Solution: A brute force approach would be to store all the packets read so far. After reading in each
packet, we apply Solution 5.12 on the preceding page to compute a random subset of k packets.
The space complexity is high—O(n), after n packets have been read. The time complexity is also
high—O(nk), since each packet read is followed by a call to Solution 5.12 on the facing page.

At first glance it may seem that it is impossible to do better than the brute-force approach,
since after reading the nth packet, we need to choose k packets uniformly from this set. However,
suppose we have read the first n packets, and have a random subset of k of them. When we read
the (n + 1)th packet, it should belong to the new subset with probability k/(n + 1). If we choose one
of the packets in the existing subset uniformly randomly to remove, the resulting collection will be
a random subset of the n + 1 packets.

55

The formal proof that the algorithm works correctly, uses induction on the number of packets
that have been read. Specifically, the induction hypothesis is that all k-sized subsets are equally
likely after n > k packets have been read.

As an example, suppose k = 2, and the packets are read in the order p, 4,7,t,u,v. We keep the
first two packets in the subset, which is {p, q}. We select the next packet, r, with probability 2/3.
Suppose it is not selected. Then the subset after reading the first three packets is still {p,gq}. We
select the next packet, t, with probability 2/4. Suppose it is selected. Then we choose one of the
packets in {p, g} uniformly, and replace it with ¢. Let g be the selected packet—now the subset is
{p,t}. We select the next packet u with probability 2/5. Suppose it is selected. Then we choose one
of the packets in {p, t} uniformly, and replace it with u. Let t be the selected packet—now the subset
is {p, u}. We select the next packet v with probability 2/6. Suppose it is not selected. The random
subset remains {p, u}.
; As;umption: there are at.least k elem;;f;";;mzﬁé ;;;éa;t
def online_random_sample (it, k):

Stores the first k elements.
sampling_results = list(itertools.islice(it, k))

Have read the first k elements.
num_seen_so_far = k
for x in it:
num_seen_so_far += 1
Generate a random number in [0, num_seen_so_far - 1], and if this
number is in [0, k - 1], we replace that element from the sample with
x.
idx_to_replace = random.randrange (num_seen_so_far)
if idx_to_replace < k:
sampling_results[idx_to_replace] = x
return sampling_results
The time complexity is proportional to the number of elements in the stream, since we spend O(1)
time per element. The space complexity is O(k).
Note that at each iteration, every subset is equally likely. However, the subsets are not indepen-
dent from iteration to iteration—successive subsets differ in at most one element. In contrast, the

subsets computed by brute-force algorithm are independent from iteration to iteration.

5.14 COMPUTE A RANDOM PERMUTATION

Generating random permutations is not as straightforward as it seems. For example, iterating
through (0, 1,...,n — 1) and swapping each element with another randomly selected element does
not generate all permutations with equal probability. One way to see this is to consider the case
n = 3. The number of permutations is 3! = 6. The total number of ways in which we can choose
the elements to swap is 3 = 27 and all are equally likely. Since 27 is not divisible by 6, some
permutations correspond to more ways than others, so not all permutations are equally likely.

Design an algorithm that creates uniformly random permutations of {0,1,...,7n — 1}. You are given
a random number generator that returns integers in the set {0, 1,...,n — 1} with equal probability;
use as few calls to it as possible.

56

Hint: If the result is stored in A, how would you proceed once A[n — 1] is assigned correctly?

Solution: A brute-force approach might be to iteratively pick random numbers between 0 and n-1,
inclusive. If number repeats, we discard it, and try again. A hash table is a good way to store and
test values that have already been picked.

For example, if n = 4, we might have the sequence 1, 2, 1 (repeats), 3, 1 (repeats), 2 (repeat), 0
(done, all numbers from 0 to 3 are present). The corresponding permutation is (1, 2, 3, 0).

It is fairly clear that all permutations are equally likely with this approach. The space complexity
beyond that of the result array is O(n) for the hash table. The time complexity is slightly challenging
to analyze. Early on, it takes very few iterations to get more new values, but it takes a long time
to collect the last few values. Computing the average number of tries to complete the permutation
in this way is known as the Coupon Collector’s Problem. It is known that the number of tries on
average (and hence the average time complexity) is O(n log n).

Clearly, the way to improve time complexity is to avoid repeats. We can do this by restricting
the set we randomly choose the remaining values from. If we apply Solution 5.12 on Page 54 to
(0,1,2,...,n = 1) with k = n, at each iteration the array is partitioned into the partial permutation
and remaining values. Although the subset that is returned is unique (it will be {0, 1,...,1n - 1}), all
n! possible orderings of the elements in the set occur with equal probability. For example, let n = 4.
We begin with (0, 1,2, 3). The first random number is chosen between 0 and 3, inclusive. Suppose
itis 1. We update the array to (1,0, 2,3). The second random number is chosen between 1 and 3,
inclusive. Suppose it is 3. We update the array to (1,3,0,2). The third random number is chosen
between 2 and 3, inclusive. Suppose it is 3. We update the array to (1,3,2,0). This is the returned
result.
def compute_random_permutation(n):
permutation = list(range(n))
random_sampling(n, permutation)
return permutation

The time complexity is O(n), and, as an added bonus, no storage outside of that needed for the
permutation array itself is needed.

5.15 COMPUTE A RANDOM SUBSET

The set {0,1,2,...,n — 1} has (j) = n!/((n - k)'k!) subsets of size k. We seek to design an algorithm
that returns any one of these subsets with equal probability.

Write a program that takes as input a positive integer n and a size k < n, and returns a size-k subset
of {0,1,2,...,n — 1}. The subset should be represented as an array. All subsets should be equally
likely and, in addition, all permutations of elements of the array should be equally likely. You may
assume you have a function which takes as input a nonnegative integer t and returns an integer in
the set {0,1,..., ¢ — 1} with uniform probability.

Hint: Simulate Solution 5.12 on Page 54, using an appropriate data structure to reduce space.

Solution: Similar to the brute-force algorithm presented in Solution 5.14 on the preceding page, we
could iteratively choose random numbers between 0 and 7 — 1 until we get k distinct values. This

57

approach suffers from the same performance degradation when k is close to , and it also requires
O(k) additional space.

We could mimic the offline sampling algorithm described in Solution 5.12 on Page 54, with
A[i] = i initially, stopping after k iterations. This requires O(n) space and O(n) time to create the
array. After creating (0,1,2,...,n — 1), we need O(k) time to produce the subset.

Note that when k < n, most of the array is untouched, i.e., A[i] = i. The key to reducing the
space complexity to O(k) is simulating A with a hash table. We do this by only tracking entries
whose values are modified by the algorithm—the remainder have the default value, i.e., the value
of an entry is its index.

Specifically, we maintain a hash table H whose keys and values are from {0, 1,...,n—1}. Concep-
tually, H tracks entries of the array which have been touched in the process of randomization—these
are entries A[i] which may not equal i. The hash table H is updated as the algorithm advances.

e Ifiisin H, then its value in H is the value stored at A[i] in the brute-force algorithm.

e Ifiisnot in H, then this implicitly implies A[{] = i.

Since we track no more than k entries, when k is small compared to 1, we save time and space over
the brute-force approach, which has to initialize and update an array of length .

Initially, H is empty. We do k iterations of the following. Choose a random integer r in [0,n—1-1],
where i is the current iteration count, starting at 0. There are four possibilities, corresponding to
whether the two entries in A that are being swapped are already present or not present in H. The
desired result is in A[0, k — 1], which can be determined from H.

For example, suppose n = 100 and k = 4. In the first iteration, suppose we get the random
number 28. We update H to (0, 28),(28,0). This means that A[0] is 28 and A[28] is 0—for all other
i, Ali] = i. In the second iteration, suppose we get the random number 42. We update H to
(0,28),(28,0),(1,42), (42,1). In the third iteration, suppose we get the random number 28 again. We
update H to (0,28),(28,2),(1,42),(42,1),(2,0). In the third iteration, suppose we get the random
number 64. We update H to (0,28),(28,2),(1,42),(42,1),(2,0),(3,64),(64,3). The random subset is
the 4 elements corresponding to indices 0,1, 2,3, i.e., (28,42, 0, 64).

def random_subset(n, k):
changed_elements = {}
for i in range(k):
Generate a random index between i and n - 1, inclusive.
rand_idx = random.randrange(i, n)
rand_idx_mapped = changed_elements.get(rand_idx, rand_idx)
i_mapped = changed_elements.get(i, 1)
changed_elements[rand_idx] = i_mapped
changed_elements[i] = rand_idx_mapped

return [changed_elements[i] for i in range(k)]

The time complexity is O(k), since we perform a bounded number of operations per iteration. The
space complexity is also O(k), since H and the result array never contain more than k entries.

5.16 GENERATE NONUNIFORM RANDOM NUMBERS

Suppose you need to write a load test for a server. You have studied the inter-arrival time of
requests to the server over a period of one year. From this data you have computed a histogram

58

of the distribution of the inter-arrival time of requests. In the load test you would like to generate
requests for the server such that the inter-arrival times come from the same distribution that was
observed in the historical data. The following problem formalizes the generation of inter-arrival
times.

You are given n numbers as well as probabilities py, p1, . . ., pn-1, which sum up to 1. Given a random
number generator that produces values in [0, 1) uniformly, how would you generate one of the n
numbers according to the specified probabilities? For example, if the numbers are 3,5,7,11, and
the probabilities are 9/18,6/18,2/18,1/18, then in 1000000 calls to your program, 3 should appear
roughly 500000 times, 5 should appear roughly 333333 times, 7 should appear roughly 111111 times,
and 11 should appear roughly 55555 times.

Hint: Look at the graph of the probability that the selected number is less than or equal to a. What do the

jumps correspond to?

Solution: First note that actual values of the numbers is immaterial—we want to choose from one
of n outcomes with probabilities pg, p1, . . ., pn—1. If all probabilities were the same, i.e., 1/n, we could
make a single call to the random number generator, and choose outcome i if the number falls lies
between i/n and (i + 1)/n.

For the case where the probabilities are not the same, we can solve the problem by partitioning
the unit interval [0, 1] into n disjoint segments, in a way so that the length of the jth interval is
proportional to p;. Then we select a number uniformly at random in the unit interval, [0, 1], and
return the number corresponding to the interval the randomly generated number falls in.

An easy way to create these intervals is to use po,po + p1,po + P1 +p2,-- -, Po+p1+p2+ -+ +
pn-1 as the endpoints. Using the example given in the problem statement, the four intervals are
[0.0,0.5),[0.5,0.833), [0.833,0.944), [0.944,1.0]. Now, for example, if the random number generated
uniformly in [0.0, 1.0] is 0.873, since 0.873 lies in [0.833, 0.944), which is the third interval, we return
the third number, which is 7.

In general, searching an array of n disjoint intervals for the interval containing a number takes
O(n) time. However, we can do better. Since the array (po, po+p1, Po+P1+P2, - - ., Po+P1+P2+ - - +Pn-1)
is sorted, we can use binary search to find the interval in O(log 1) time.

def nonuniform_random_number_generation(values, probabilities):
prefix_sum_of_probabilities = list(itertools.accumulate(probabilities))
interval_idx = bisect.bisect(prefix_sum_of_probabilities, random.random())
return values[interval_idx]

The time complexity to compute a single value is O(n), which is the time to create the array of
intervals. This array also implies an O(n) space complexity.

Once the array is constructed, computing each additional result entails one call to the uniform
random number generator, followed by a binary search, i.e., O(logn).

Variant: Given a random number generator that produces values in [0, 1] uniformly, how would
you generate a value X from T according to a continuous probability distribution, such as the
exponential distribution?

59

Multidimensional arrays

Thus far we have focused our attention in this chapter on one-dimensional arrays. We now turn our
attention to multidimensional arrays. A 2D array in an array whose entries are themselves arrays;
the concept generalizes naturally to k dimensional arrays.

Multidimensional arrays arise in image processing, board games, graphs, modeling spatial
phenomenon, etc. Often, but not always, the arrays that constitute the entries of a 2D array A have
the same length, in which case we refer to A as being an m X n rectangular array (or sometimes
just an m X n array), where m is the number of entries in A, and n the number of entries in A[0].
The elements within a 2D array A are often referred to by their row and column indices i and j, and
written as A[][j].

5.17 THE SUDOKU CHECKER PROBLEM

Sudoku is a popular logic-based combinatorial number placement puzzle. The objective is to fill
a 9 x 9 grid with digits subject to the constraint that each column, each row, and each of the nine
3 X 3 sub-grids that compose the grid contains unique integers in [1,9]. The grid is initialized with
a partial assignment as shown in Figure 5.2(a); a complete solution is shown in Figure 5.2(b).

5|3 7 5/3(4]16|7|8|9|1|2
1(9|5 6/7(2|1/9|5|13[4|8
9|8 6 1198|314 (2|5|6]|7
8 6 3 8(5(9|17|61|4|2|3
4 8 3 1 4|2|6|8|5|3|7]|9]|1
7 2 6 7(1(3]19(2(4(|8|5]|6
6 2|8 916|1|5(3(7]2|8|4
419 5 2|18(714(1|9(6|3|5
8 719 3|14|5|2|8|6|1|7]|9

(a) Partial assignment. (b) A complete solution.

Figure 5.2: Sudoku configurations.

Check whether a 9 X 9 2D array representing a partially completed Sudoku is valid. Specifically,
check that no row, column, or 3 x 3 2D subarray contains duplicates. A 0O-value in the 2D array
indicates that entry is blank; every other entry is in [1,9].

Hint: Directly test the constraints. Use an array to encode sets.

Solution: There is no real scope for algorithm optimization in this problem—it’s all about writing
clean code.

We need to check nine row constraints, nine column constraints, and nine sub-grid constraints.
It is convenient to use bit arrays to test for constraint violations, that is to ensure no number in [1,9]
appears more than once.

Check if a partially filled matrix has any conflicts.

60

def is_valid_sudoku(partial_assignment):
Return True if subarray
partial_assignment[start_row:end_row][start_col:end_col] contains any
duplicates in {1, 2, ..., len(partial_assignment)}; otherwise return
False.
def has_duplicate(block):
block = list(filter(lambda x: x != 0, block))
return len(block) != len(set(block))

n = len(partial_assignment)
Check row and column constraints.
if any(
has_duplicate([partial_assignment[i][j] for j in range(n)])
or has_duplicate([partial_assignment[j][i] for j in range(n)])
for i in range(n)):
return False

Check region constraints.
region_size = int(math.sqrt(n))
return all(not has_duplicate([
partial_assignment[a]([b]
for a in range(region_size * I, region_size * (I + 1))
for b in range(region_size * J), region_size * (J + 1))
1) for I in range(region_size) for J in range(region_size))

Pythonic solution that exploits the power of list comprehension.
def is_valid_sudoku_pythonic(partial_assignment):
region_size = int(math.sqrt(len(partial_assignment)))
return max(
collections.Counter (k
for i, row in enumerate(partial_assignment)
for j, c in enumerate(row)
if c!=90
for k in ((i, str(c)), (str(c), j),
(i / region_size, j / region_size,
str(c)))).values(Q),
default=0) <=1

The time complexity of this algorithm for an n x n Sudoku grid with v x v/ subgrids is O(n?) +

O(n?) + O(n?/(Yn)? x (Vn)?) = O(n?); the terms correspond to the complexity to check n row

constraints, the n column constraints, and the n subgrid constraints, respectively. The memory

usage is dominated by the bit array used to check the constraints, so the space complexity is O(n).
Solution 15.9 on Page 230 describes how to solve Sudoku instances.

5.18 COMPUTE THE SPIRAL ORDERING OF A 2D ARRAY

A 2D array can be written as a sequence in several orders—the most natural ones being row-
by-row or column-by-column. In this problem we explore the problem of writing the 2D array
in spiral order. For example, the spiral ordering for the 2D array in Figure 5.3(a) on the fol-

61

lowing page is (1,2,3,6,9,8,7,4,5). For Figure 5.3(b) on the next page, the spiral ordering is
(1,2,3,4,8,12,16,15,14,13,9,5,6,7,11, 10).

Co G C (6

G G G Ro 1 2 3 4
R, 1 2 3 Ri |5 6 7| 8

: R . .
R, 4 5 6 R |9 10 11 12
R, 7 8 9 | R, 13 14 15 16
(a) Spiral ordering for a 3 x3 array. (b) Spiral ordering for a 4 x 4 array.

Figure 5.3: Spiral orderings. Column and row ids are specified above and to the left of the matrix. The value 1 is at
entry Ry, Co.

Write a program which takes an n X n 2D array and returns the spiral ordering of the array.
Hint: Use case analysis and divide-and-conquer.

Solution: It is natural to solve this problem starting from the outside, and working to the center.
The naive approach begins by adding the first row, which consists of n elements. Next we add the
n — 1 remaining elements of the last column, then the n — 1 remaining elements of the last row, and
then the n — 2 remaining elements of the first column. The lack of uniformity makes it hard to get
the code right.

Here is a uniform way of adding the boundary. Add the first n — 1 elements of the first row.
Then add the first n — 1 elements of the last column. Then add the last n — 1 elements of the last row
in reverse order. Finally, add the last n — 1 elements of the first column in reverse order.

After this, we are left with the problem of adding the elements of an (n — 2) X (n — 2) 2D
array in spiral order. This leads to an iterative algorithm that adds the outermost elements of
nxn,m-2)x(n-2),(n—-4)x(mn-4),... 2D arrays. Note that a matrix of odd dimension has a
corner-case, namely when we reach its center.

As an example, for the 3 X 3 array in Figure 5.3(a), we would add 1, 2 (first two elements of the
first row), then 3, 6 (first two elements of the last column), then 9,8 (last two elements of the last
row), then 7,4 (last two elements of the first column). We are now left with the 1 x 1 array, whose
sole element is 5. After processing it, all elements are processed.

For the 4 x 4 array in Figure 5.3(b), we would add 1,2, 3 (first three elements of the first row),
then 4, 8,12 (first three elements of the last column), then 16,15, 14 (last three elements of the last
row), then 13,9, 5 (last three elements of the first column). We are now left with a 2 X 2 matrix,
which we process similarly in the order 6,7,11, 10, after which all elements are processed.
def matrix_in_spiral_order(square_matrix): ‘ - o o

def matrix_layer_in_clockwise(offset):

if offset == len(square_matrix) - offset - 1:
square_matrix has odd dimension, and we are at the center of the

62

matrix square_matrix.
spiral_ordering.append(square_matrix[offset][offset])
return

spiral_ordering.extend(square_matrix[offset][offset:-1 - offset])
spiral_ordering. extend(

list(zip(*square_matrix))[-1 - offset][offset:-1 - offset])
spiral_ordering.extend(

square_matrix[-1 - offset][-1 - offset:offset:-1])
spiral_ordering.extend(

list(zip(*square_matrix))[offset][-1 - offset:offset:-1])

spiral_ordering = []

for offset in range((len(square_matrix) + 1) // 2):
matrix_layer_in_clockwise(offset)

return sp1ra1 orderlng

The time complexity is O(nz)

The above solution uses four iterations which are almost identical. Now we present a
solution that uses a single iteration. We start at the entry at Ro,Co. We process entries
in the sequence R, Cy,Ro,C1,...,Ro,Cyoa, ie,, we are moving to the right. Then we pro-
cess entries Ry, Cp-1,R1,Cy-1,...,Rn-2,Cy-1, ie., we are moving down. Then we process en-
tries Ry-1,Cn-1,Ru-1,Cu-2,...,Rn-1,C1, i.e., we are moving to the left. Then we process entries
Ry-1,Co,Ry-2,Co, ..., R1,Cy, ie., we are moving up. We record that an element has already been
processed by setting it to 0, which is assumed to be a value that is not already present in the ar-
ray. (Any value not in the array works too.) After processing the entry R;, Cy we start the same
process from Ry, C1. This method is applied until all elements are processed. Conceptually, we are
processmg the array in “shells” from the out51de movmg to the center.

def matrix_in_ sp1ra1 order(square matr1x)
SHIFT = ((0, 1), (1, &, (8, -1), (-1,)
direction = x =y = 0
spiral_ordering = []
for _ in range(len(square_matrix)**2):
spiral_ordering.append(square_matrix[x]([y])
square_matrix[x][y] =
next_x, next_y = x + SHIFT[direction][0], y + SHIFT[direction][1]
if (next_x not in range(len(square_matrix))
or next_y not in range(len(square_matrix))
or square_matrix[next_x][next_y] == 0):
direction = (direction + 1) & 3
next_x, next_y = x + SHIFT[direction][0], y + SHIFT[direction][1]
X, Y = next_x, next_y
return sp1ra1 orderlng

The time complex1ty is O(n?) and the space complex1ty is O(1).

Variant: Given a dimension d, write a program to generate a d X d 2D array which in spiral order is

(1,2,3,...,d?%). For example, if d = 3, the result should be

>
1]
N oo =
N v N
)

Variant: Given a sequence of integers P, compute a 2D array A whose spiral order is P. (Assume
the size of P is n? for some integer n.)

Variant: Write a program to enumerate the first n pairs of integers (4,b) in spiral order,
starting from (0,0) followed by (1,0). For example, if n = 10, your output should be

(O/ 0)1 (1/ O)I (1/ —1)/ (01 —1)/ (_1/ —1)/ (_1/ 0)/ (_1/ 1)/ (01 1)/ (1/ l)/ (2/ 1)
Variant: Compute the spiral order for an m X n 2D array A.
Variant: Compute the last element in spiral order for an m X n 2D array A in O(1) time.

Variant: Compute the kth element in spiral order for an m X n 2D array A in O(1) time.

5.19 RoOTATE A 2D ARRAY

Image rotation is a fundamental operation in computer graphics. Figure 5.4 illustrates the rotation
operation on a 2D array representing a bit-map of an image. Specifically, the image is rotated by

90 degrees clockwise.
1 2 3 4 13 9 5 1
5 6 7 8 §14.1o 6 2
9 10 11 12 215’11'7'3'
B U 15 16 216‘12.8.4‘
(a) Ivnitial 4% 4 ZD array. H (b) Array rotated By 90 degregs clockwise.

Figure 5.4: Example of 2D array rotation.

Write a function that takes as input an n x n 2D array, and rotates the array by 90 degrees clockwise.
Hint: Focus on the boundary elements.

Solution: With a little experimentation, it is easy to see that ith column of the rotated matrix is the
ith row of the original matrix. For example, the first row, (13, 14, 15, 16) of the initial array in 5.4
becomes the first column in the rotated version. Therefore, a brute-force approach is to allocate a
new n X n 2D array, write the rotation to it (writing rows of the original matrix into the columns of
the new matrix), and then copying the new array back to the original one. The last step is needed
since the problem says to update the original array. The time and additional space complexity are
both O(n?).

Since we are not explicitly required to allocate a new array, it is natural to ask if we can perform
the rotation in-place, i.e., with O(1) additional storage. The first insight is that we can perform the
rotation in a layer-by-layer fashion—different layers can be processed independently. Furthermore,
within a layer, we can exchange groups of four elements at a time to perform the rotation, e.g.,
send 1 to 4’s location, 4 to 16’s location, 16 to 13’s location, and 13 to 1’s location, then send 2 to 8’s
location, 8 to 15’s location, 15 to 9’s location, and 9 to 2’s location, etc. The program below works
its way into the center of the array from the outermost layers, performing exchanges within a layer
iteratively using the four-way swap just described.
def rotate_matrix(square_matrix):

matrix_size = len(square_matrix) - 1
for i in range(len(square_matrix) // 2):
for j in range(i, matrix_size - i):
Perform a 4-way exchange. Note that A[~i] for i in [0, len(A) - 1]
is A[-(i + D].
(square_matrix[i][j], square_matrix[~j][i], square_matrix[~i][~j],
square_matrix[j][~i]) = (square_matrix[~j][i],
square_matrix[~i][~j],
square_matrix[jl[~i], square_matrix[i][j])
The time complexity is O(n?) and the additional space complexity is O(1).

Interestingly, we can get the effect of a rotation with O(1) space and time complexity, albeit with
some limitations. Specifically, we return an object r that composes the original matrix A. A read
of the element at indices 7 and j in r is converted into a read from A at index [n — 1 — j][i]. Writes
are handled similarly. The time to create r is constant, since it simply consists of a reference to A.
The time to perform reads and writes is unchanged. This approach breaks when there are clients
of the original A object, since writes to r change A. Even if A is not written to, if methods on the
stored objects change their state, the system gets corrupted. Copy-on-write can be used to solve
these issues.

class RotatedMatrix:
def __init__(self, square_matrix):
self._square_matrix = square_matrix

def read_entry(self, i, j):
Note that A[~i] for i in [0, len(A) - 1] is A[~Ci + 1)].
return self._square_matrix[~j][i]

def write_entry(self, i, j, v):
self._square_matrix[~j][i] = v

Variant: Implement an algorithm to reflect A, assumed to be an n X n 2D array, about the horizontal
axis of symmetry. Repeat the same for reflections about the vertical axis, the diagonal from top-left
to bottom-right, and the diagonal from top-right to bottom-left.

5.20 CoMPUTE ROWS IN PascAL’s TRIANGLE

Figure 5.5 on the following page shows the first five rows of a graphic that is known as Pascal’s
triangle. Each row contains one more entry than the previous one. Except for entries in the last

65

1 (4]6]4]1

Figure 5.5: A Pascal triangle.

row, each entry is adjacent to one or two numbers in the row below it. The first row holds 1. Each
entry holds the sum of the numbers in the adjacent entries above it.

Write a program which takes as input a nonnegative integer n and returns the first n rows of Pascal’s
triangle.

Hint: Write the given fact as an equation.

Solution: A brute-force approach might be to organize the arrays in memory similar to how they
appear in the figure. The challenge is to determine the correct indices to range over and to read
from.

A better approach is to keep the arrays left-aligned, that is the first entry is at location 0. Now it
is simple: the jth entry in the ith row is 1if j = 0 or j = i, otherwise it is the sum of the (j — 1)th and
jth entries in the (i — 1)th row. The first row Ry is (1). The second row R; is (1,1). The third row R;
is (1, R1[0] + R4[1] = 2,1). The fourth row Rj is (1, R;[0] + R2[1] = 3,Rz[1] + R[2] = 3, 1).

def generate_pascal_triangle(n):
result = [[1] * (i + 1) for i in range(n)]
for i in range(n):
for j in range(l, i):
Sets this entry to the sum of the two above adjacent entries.
result[i][j] = result[i - 1][j - 1] + result[i - 1][j]
return result

Since each element takes O(1) time to compute, the time complexity is O(1+2+--- +n) = O(n(n +
1)/2) = O(n?). Similarly, the space complexity is O(n?).

It is a fact that the ith entry in the nth row of Pascal’s triangle is (7). This in itself does not
trivialize the problem, since computing (7) itself is tricky. (In fact, Pascal’s triangle can be used to
compute (}).)

Variant: Compute the nth row of Pascal’s triangle using O(n) space.

CHAPTER

Strings

String pattern matching is an important problem that occurs in
many areas of science and information processing. In comput-
ing, it occurs naturally as part of data processing, text editing,
term rewriting, lexical analysis, and information retrieval.

— “Algorithms For Finding Patterns in Strings,”
A. V. Ano, 1990

Strings are ubiquitous in programming today—scripting, web development, and bioinformatics all
make extensive use of strings.

A string can be viewed as a special kind of array, namely one made out of characters. We
treat strings separately from arrays because certain operations which are commonly applied to
strings—for example, comparison, joining, splitting, searching for substrings, replacing one string
by another, parsing, etc.—do not make sense for general arrays.

You should know how strings are represented in memory, and understand basic operations on
strings such as comparison, copying, joining, splitting, matching, etc. Advanced string processing
algorithms often use hash tables (Chapter 12) and dynamic programming (Page 234). In this chapter
we present problems on strings which can be solved using basic techniques.

Strings boot camp

A palindromic string is one which reads the same when it is reversed. The program below checks
whether a string is palindromic. Rather than creating a new string for the reverse of the input
string, it traverses the input string forwards and backwards, thereby saving space. Notice how it
uniformly handles even and odd length strings.

def is;.palindz"omic'('s):
Note that s[~i] for i in [0, len(s) - 1] is s[-(i + 1)].
return all(s[i] == s[~i] for i in range(len(s) // 2))

The time complexity is O(n) and the space complexity is O(1), where n is the length of the string.

Know your string libraries

The key operators and functions on strings are s[3], len(s), s + t, s[2:4] (and
all the other variants of slicing for lists described on Page 39), s in t, s.strip(),
s.startswith(prefix), s.endswith(suffix), ’Euclid,Axiom 5,Parallel Lines’.split(’,’),
3 % ’'01’, ’,’.join((’Gauss’, ’Prince of Mathematicians’, '1777-1855')), s.tolower(),
and 'Name {name}, Rank {rank}’.format(name='Archimedes’, rank=3).

It’s important to remember that strings are immutable—operations like s = s[1:] or s +=
123’ imply creating a new array of characters that is then assigned back to s. This implies that
concatenating a single character n times to a string in a for loop has O(n?) time complexity. (Some

67

Similar to arrays, string problems often have simple brute-force solutions that use O(n) space
solution, but subtler solutions that use the string itself to reduce space complexity to O(1).

Understand the implications of a string type which is immutable, e.g., the need to allocate a
new string when concatenating immutable strings. Know alternatives to immutable strings,
e.g., alist in Python.

Updating a mutable string from the front is slow, so see if it’s possible to write values from the
back.

Table 6.1: Top Tips for Strings

implementations of Python use tricks under-the-hood to avoid having to do this allocation, reducing
the complexity to O(n).)

6.1 INTERCONVERT STRINGS AND INTEGERS

A string is a sequence of characters. A string may encode an integer, e.g., “123” encodes 123. In
this problem, you are to implement methods that take a string representing an integer and return
the corresponding integer, and vice versa. Your code should handle negative integers. You cannot
use library functions like int in Python.

Implement an integer to string conversion function, and a string to integer conversison function.
For example, if the input to the first function is the integer 314, it should return the string “314” and
if the input to the second function is the string 314" it should return the integer 314.

Hint: Build the result one digit at a time.

Solution: Let’s consider the integer to string problem first. If the number to convert is a single
digit, i.e., it is between 0 and 9, the result is easy to compute: it is the string consisting of the single
character encoding that digit.

If the number has more than one digit, it is natural to perform the conversion digit-by-digit. The
key insight is that for any positive integer x, the least significant digit in the decimal representation
of xis x mod 10, and the remaining digits are x/10. This approach computes the digits in reverse
order, e.g., if we begin with 423, we get 3 and are left with 42 to convert. Then we get 2, and are left
with 4 to convert. Finally, we get 4 and there are no digits to convert. The natural algorithm would
be to prepend digits to the partial result. However, adding a digit to the beginning of a string is
expensive, since all remaining digit have to be moved. A more time efficient approach is to add
each computed digit to the end, and then reverse the computed sequence.

If x is negative, we record that, negate x, and then add a ’-’ before reversing. If x is 0, our code
breaks out of the iteration without writing any digits, in which case we need to explicitly set a 0.

To convert from a string to an integer we recall the basic working of a positional number system.
A base-10 number d,d1dy encodes the number 10? x d, + 10! x dy + dy. A brute-force algorithm then
is to begin with the rightmost digit, and iteratively add 10' X d; to a cumulative sum. The efficient
way to compute 10! is to use the existing value 10' and multiply that by 10.

A more elegant solution is to begin from the leftmost digit and with each succeeding digit,
multiply the partial result by 10 and add that digit. For example, to convert “314” to an integer, we

68

initial the partial result 7 to 0. In the first iteration, r = 3, in the second iterationr =3 x 10 +1 =31,
and in the third iteration r = 31 x 10 + 4 = 314, which is the final result.
Negative numbers are handled by recording the sign and negating the result.
def int_to_string(x):
is_negative = False

if x < 0:
X, is_negative = -x, True
s =[]
while True:
s.append(chr(ord(’'0’) + x % 10))
x //= 10
if x ==
break

Adds the negative sign back if is_negative
return ('-' if is_negative else ’'’') + ’'’'.join(reversed(s))

def string_to_int(s):
return functools.reduce(
lambda running_sum, c: running_sum * 10 + string.digits.index(c),
s[s[0] == '-"':]1, O * (-1 if s[0] == '-' else 1)

6.2 BASE CONVERSION

In the decimal number system, the position of a digit is used to signify the power of 10 that digit
is to be multiplied with. For example, “314” denotes the number 3 X 100 + 1 X 10 + 4 X 1. The
base b number system generalizes the decimal number system: the string “ax_14x- .. . a149”, where
0 < a; < b, denotes in base-b the integer ag X b° + a; X b! + a3 X b + - -+ + a1 x bFL.

Write a program that performs base conversion. The input is a string, an integer b;, and another
integer b,. The string represents an integer in base b1. The output should be the string representing
the integer in base b,. Assume 2 < by, b; < 16. Use “A” to represent 10, “B” for 11, ..., and “F” for
15. (For example, if the string is “615”, by is 7 and b, is 13, then the result should be “1A7”, since
6x724+1x7+5=1x132+10x13+7.)

Hint: What base can you easily convert to and from?

Solution: A brute-force approach might be to convert the input to a unary representation, and then
group the 1s as multiples of b, b%, bg, etc. For example, (102)3 = (11111111111);. To convert to
base 4, there are two groups of 4 and with three 1s remaining, so the result is (23)4. This approach
is hard to implement, and has terrible time and space complexity.

The insight to a good algorithm is the fact that all languages have an integer type, which
supports arithmetical operations like multiply, add, divide, modulus, etc. These operations make
the conversion much easier. Specifically, we can convert a string in base b; to integer type using
a sequence of multiply and adds. Then we convert that integer type to a string in base b, using
a sequence of modulus and division operations. For example, for the string is “615”, b, = 7 and
b, = 13, then the integer value, expressed in decimal, is 306. The least significant digit of the result
is 306 mod 13 = 7, and we continue with 306/13 = 23. The next digit is 23 mod 13 = 10, which we

69

denote by “A’. We continue with 23/13 = 1. Since 1 mod 13 = 1 and 1/13 = 0, the final digit is 1,
and the overall result is “1A7”. The design of the algorithm nicely illustrates the use of reduction.

Since the conversion algorithm is naturally expressed in terms of smaller similar subproblems,
it is natural to implement it using recursion.

def convert_base(num_as_string, bl, b2):
def construct_from_base(num_as_int, base):
return ('’ if num_as_int == 0 else
construct_from_base (num_as_int // base, base) +
string.hexdigits[num_as_int % base].upper())
is_negative = num_as_string[0] == '-’
num_as_int = functools.reduce(
lambda x, c: x * bl + string.hexdigits.index(c.lower()),
num_as_string[is_negative:], 0)
return ('-’' if is_negative else ’’') + ('0’ if num_as_int == 0 else
construct_from_base(num_as_int, b2))

The time complexity is O(n(1 + logl72 by)), where n is the length of s. The reasoning is as follows.
First, we perform n multiply-and-adds to get x from s. Then we perform log,, x multiply and adds
to get the result. The value x is upper-bounded by b}, and log, (b}) = nlog, b1.

6.3 COMPUTE THE SPREADSHEET COLUMN ENCODING

Spreadsheets often use an alphabetical encoding of the successive columns. Specifically, columns
are identiﬁed by IIAII’ IIBII’ IICIII e, llell IIYII’ IIZII’ IIAAII’ IIAB”’ ., IIZZII’ IIAAAIII IIAABIII e
Implement a function that converts a spreadsheet column id to the corresponding integer, with “A”

corresponding to 1. For example, you should return 4 for “D”, 27 for “AA”, 702 for “ZZ”, etc. How
would you test your code?

Hint: There are 26 characters in [“A”,“Z"], and each can be mapped to an integer.

Solution: A brute-force approach could be to enumerate the column ids, stopping when the id
equals the input. The logic for getting the successor of “Z”, “AZ”, etc. is slightly involved. The
bigger issue is the time-complexity—it takes 26° steps to get to “ZZZZZZ". In general, the time
complexity is O(26"), where n is the length of the string.

We can do better by taking larger jumps. Specifically, this problem is basically the problem of
converting a string representing a base-26 number to the corresponding integer, except that “A”
corresponds to 1 not 0. We can use the string to integer conversion approach given in Solution 6.1
on Page 68.

For example to convert “ZZ”, we initialize result to 0. We add 26, multiply by 26, then add 26
again, i.e., the id is 262 + 26 = 702.

Good test cases are around boundaries, e.g., “A”, “B”, “Y”, “Z”, “AA”, “AB”, “ZY”, “ZZ", and
some random strings, e.g., “M”, “BZ”, “CCC".
def ss_decode_col_id(col):

return functools.reduce(
lambda result, c: result * 26 + ord(c) - ord(’A’) + 1, col, 0)

The time complexity is O(n).

70

Variant: Solve the same problem with “A” corresponding to 0.

Variant: Implement a function that converts an integer to the spreadsheet column id. For example,
you should return “D” for 4, “AA” for 27, and “ZZ"” for 702.

6.4 REPLACE AND REMOVE

Consider the following two rules that are to be applied to an array of characters.
o Replace each ‘a’ by two ‘d’s.
¢ Delete each entry containing a 'b’.
For example, applying these rules to the array (a,c,d, b, b, c,a) results in the array (d,4d, c,d, c,d, d).

Write a program which takes as input an array of characters, and removes each ‘b’ and replaces
each ‘a’ by two “d’s. Specifically, along with the array, you are provided an integer-valued size. Size
denotes the number of entries of the array that the operation is to be applied to. You do not have
to worry about preserving subsequent entries. For example, if the array is (a,b,4,c, .) and the size
is 4, then you can return (d,d, d, d, c). You can assume there is enough space in the array to hold the
final result.

Hint: Consider performing multiples passes on s.

Solution: Library array implementations often have methods for inserting into a specific location
(all later entries are shifted right, and the array is resized) and deleting from a specific location
(all later entries are shifted left, and the size of the array is decremented). If the input array had
such methods, we could apply them—however, the time complexity would be O(n?), where is the
array’s length. The reason is that each insertion and deletion from the array would have O(n) time
complexity.

This problem is trivial to solve in O(n) time if we write result to a new array—we skip 'b’s,
replace ‘a’s by two ‘d’s, and copy over all other characters. However, this entails O(n) additional
space.

If there are no “a’s, we can implement the function without allocating additional space with one
forward iteration by skipping 'b’s and copying over the other characters.

If there are no 'b’s, we can implement the function without additional space as follows. First, we
compute the final length of the resulting string, which is the length of the array plus the number of
‘a’s. We can then write the result, character by character, starting from the last character, working
our way backwards.

For example, suppose the array is (4,c,4,4,.,.,.), and the specified size is 4. Our algorithm
updates the array to (a,c,a,4, .,d,d). (Boldface denotes characters that are part of the final result.)
The next update is {a,c,4,d,d, d, d), followed by (4,c, c,d,d,d,d), and finally {(d,d, c,d,d,d, d).

We can combine these two approaches to get a complete algorithm. First, we delete 'b’s and
compute the final number of valid characters of the string, with a forward iteration through the
string. Then we replace each ‘a’ by two ‘d’s, iterating backwards from the end of the resulting
string. If there are more 'b’s than ‘a’s, the number of valid entries will decrease, and if there are
more ‘a’s than b’s the number will increase. In the program below we return the number of valid
entries in the final result.

def replace_and_remove(size, s):
Forward iteration: remove 'b’'s and count the number of ’'a’s.

71

write_idx, a_count = 0, 0
for i in range(size):
if s[i] !'= 'b’:
s[write_idx] = s[i]
write_idx += 1
if s[i] == 'a’:
a_count += 1

Backward iteration: replace 'a’'s with 'dd’'s starting from the end.

cur_idx = write_idx - 1

write_idx += a_count - 1

final_size = write_idx + 1

while cur_idx >= 0:
if s[cur_idx] ==

a @

s[write_idx - 1l:write_idx + 1] = 'dd’
write_idx -= 2
else:
s[write_idx] = s[cur_idx]
write_idx -= 1
cur_idx -= 1

return final_size

The forward and backward iterations each take O(n) time, so the total time complexity is O(n). No
additional space is allocated.

Variant: You have an array C of characters. The characters may be letters, digits, blanks, and
punctuation. The telex-encoding of the array C is an array T of characters in which letters, digits,
and blanks appear as before, but punctuation marks are spelled out. For example, telex-encoding
entails replacing the character “.” by the string “DOT”, the character “,” by “COMMA”, the
character “?” by “QUESTION MARK”, and the character “!” by “EXCLAMATION MARK".
Design an algorithm to perform telex-encoding with O(1) space.

Variant: Write a program which merges two sorted arrays of integers, A and B. Specifically, the
final result should be a sorted array of length m + n, where n and m are the lengths of A and B,
respectively. Use O(1) additional storage—assume the result is stored in A, which has sufficient
space. These arrays are C-style arrays, i.e., contiguous preallocated blocks of memory.

6.5 TEST PALINDROMICITY

For the purpose of this problem, define a palindromic string to be a string which when all the
nonalphanumeric are removed it reads the same front to back ignoring case. For example, “A man,
aplan, a canal, Panama.” and “Able was], ere I saw Elba!” are palindromic, but “Ray a Ray” is not.

Implement a function which takes as input a string s and returns true if s is a palindromic string.
Hint: Use two indices.

Solution: The naive approach is to create a reversed version of s, and compare it with s, skipping
nonalphanumeric characters. This requires additional space proportional to the length of s.

We do not need to create the reverse—rather, we can get the effect of the reverse of s by traversing
s from right to left. Specifically, we use two indices to traverse the string, one forwards, the other
backwards, skipping nonalphanumeric characters, performing case-insensitive comparison on the

72

alphanumeric characters. We return false as soon as there is a mismatch. If the indices cross, we
have verified palmdrom1c1ty

def 1s_pal1ndrome(s)
1 moves forward, and j moves backward.
i, j =0, len(s) -1
while i < j:
1 and j both skip non-alphanumeric characters.
while not s[i].isalnum() and i < j:

i+=1
while not s[j].isalnum() and i < j:
j-=1

if s[i].lower() != s[j].lower():
return False
i, j=1+1, 3 -1
return True

We spend 0(1) per character, so the time complex1ty is O(n) where 7 is the length of s.

6.6 REVERSE ALL THE WORDS IN A SENTENCE

Given a string containing a set of words separated by whitespace, we would like to transform it to
a string in which the words appear in the reverse order. For example, “Alice likes Bob” transforms
to “Bob likes Alice”. We do not need to keep the original string.

Implement a function for reversing the words in a string s.
Hint: It’s difficult to solve this with one pass.

Solution: The code for computing the position for each character in the final result in a single pass
is intricate.

However, for the special case where each word is a single character, the desired result is simply
the reverse of s.

For the general case, reversing s gets the words to their correct relative positions. However, for
words that are longer than one character, their letters appear in reverse order. This situation can be
corrected by reversing the individual words.

For example, “ram is costly” reversed yields “yltsoc si mar”. We obtain the final result by
reversmg each word to obtam costly is ram”

Assume s is a strlng encoded as bytearray.
def reverse_words(s):
First, reverse the whole string.
s.reverse()

def reverse_range(s, start, end):
while start < end:
s[start], s[end] = s[end], s[start]
start, end = start + 1, end - 1

start = 0
while True:
end = s.find(b' ', start)
if end < 0:
break

73

Reverses each word in the string.
reverse_range(s, start, end - 1)
start = end + 1

Reverses the last word.

reverse range(s, start, len(s) - 1)

Since we spend O(1) per character, the time complexity is O(n) where n is the length of s. The
computation in place, i.e., the additional space complexity is O(1).

6.7 COMPUTE ALL MNEMONICS FOR A PHONE NUMBER

Each digit, apart from 0 and 1, in a phone keypad corresponds to one of three or four letters of the
alphabet, as shown in Figure 6.1. Since words are easier to remember than numbers, it is natural

to ask if a 7 or 10-digit phone number can be represented by a word. For example, “2276696"
corresponds to “ACRONYM"” as well as “ABPOMZN".

ABC
GHI JKL
4 5
PQRS TUV | (wxyz
7 8 9

Figure 6.1: Phone keypad.

Write a program which takes as input a phone number, specified as a string of digits, and returns
all possible character sequences that correspond to the phone number. The cell phone keypad is
specified by a mapping that takes a digit and returns the corresponding set of characters. The
character sequences do not have to be legal words or phrases.

Hint: Use recursion.

Solution: For a 7 digit phone number, the brute-force approach is to form 7 ranges of characters,
one for each digit. For example, if the number is “2276696” then the ranges are ‘A’~'C’, 'A’-
'C, 'P-S, MO, ‘MO, 'W—'Z, and ‘M’~'0’. We use 7 nested for-loops where the iteration
variables correspond to the 7 ranges to enumerate all possible mnemonics. The drawbacks of such
an approach are its repetitiveness in code and its inflexibility.

As a general rule, any such enumeration is best computed using recursion. The execution path
is very sumlar to that of the brute-force approach but the compller handles the loopmg.

The mapping from d1g1t to correspond1ng characters.
MAPPING = (’'0’, '1’, ’'ABC’, ’'DEF’, 'GHI’', 'JKL', 'MNO', 'PQRS’, 'TUV’, ’'WXYZ’)

def phone_mnemonic (phone_number):
def phone_mnemonic_helper(digit):
if digit == len(phone_number):

74

All digits are processed, so add partial_mnemonic to mnemonics.
(We add a copy since subsequent calls modify partial_mnemonic.)
mnemonics.append(’’.join(partial_mnemonic))
else:
Try all possible characters for this digit.
for c in MAPPING[int(phone_number[digit])]:
partial_mnemonic[digit] = ¢
phone_mnemonic_helper(digit + 1)

mnemonics, partial_mnemonic = [], [0] * len(phone_number)

phone_mnemonic_helper (8)

return mnemonics
Since there are no more than 4 possible characters for each digit, the number of recursive calls, T(n),
satisfies T(n) < 4T(n— 1), where n is the number of digits in the number. This solves to T(n) = O(4").
For the function calls that entail recursion, the time spent within the function, not including the
recursive calls, is O(1). Each base case entails making a copy of a string and adding it to the result.
Since each such string has length 7, each base case takes time O(n). Therefore, the time complexity
is O(4"n).

Variant: Solve the same problem without using recursion.

6.8 THE LOOK-AND-SAY PROBLEM

The look-and-say sequence starts with 1. Subsequent numbers are derived by describing the
previous number in terms of consecutive digits. Specifically, to generate an entry of the sequence
from the previous entry, read off the digits of the previous entry, counting the number of digits in
groups of the same digit. For example, 1; one 1; two 1s; one 2 then one 1; one 1, then one 2, then
two 1s; three 1s, then two 2s, then one 1. The first eight numbers in the look-and-say sequence are
(1,11,21,1211,111221, 312211, 13112221, 1113213211).

Write a program that takes as input an integer n and returns the nth integer in the look-and-say
sequence. Return the result as a string.

Hint: You need to return the result as a string.

Solution: We compute the nth number by iteratively applying this rule n — 1 times. Since we are
counting digits, it is natural to use strings to represent the integers in the sequence. Specifically,
going from the ith number to the (i + 1)th number entails scanning the digits from most significant
to least significant, counting the number of consecutive equal digits, and writing these counts.
def.look_And;saytn):
def next_number(s):
result, i = [], ®
while i < len(s):
count = 1
while i + 1 < len(s) and s[i] == s[i + 1]:
i+=1
count += 1
result.append(str(count) + s[i])
i+=1
return '’.join(result)

75

s = '1’

for _ in range(l, n):
s = next_number(s)

return s

Pythonic solution uses the power of itertools.groupby().
def look_and_say_pythonic(n):

s ='1"

for _ in range(n - 1):

s = ''.join(
str(len(list(group))) + key for key, group in itertools.groupby(s))

return s
The precise time complexity is a function of the lengths of the terms, which is extremely hard to
analyze. Each successive number can have at most twice as many digits as the previous number—
this happens when all digits are different. This means the maximum length number has length no
more than 2". Since there are iterations and the work in each iteration is proportional to the length

of the number computed in the iteration, a simple bound on the time complexity is O(n2").

6.9 CONVERT FROM ROMAN TO DECIMAL

The Roman numeral representation of positive integers uses the symbols I, V,X,L,C, D, M. Each
symbol represents a value, with I being 1, V being 5, X being 10, L being 50, C being 100, D being
500, and M being 1000.

In this problem we give simplified rules for representing numbers in this system. Specifically,
define a string over the Roman number symbols to be a valid Roman number string if symbols
appear in nonincreasing order, with the following exceptions allowed:

¢ | can immediately precede V and X.

e X can immediately precede L and C.

¢ C can immediately precede D and M.

Back-to-back exceptions are not allowed, e.g., IXC is invalid, as is CDM.

A valid complex Roman number string represents the integer which is the sum of the symbols
that do not correspond to exceptions; for the exceptions, add the difference of the larger symbol
and the smaller symbol.

For example, the strings “XXXXXIIIIIT”, “LVIIII” and “LIX” are valid Roman number strings
representing 59. The shortest valid complex Roman number string corresponding to the integer 59
is “LIX".

Write a program which takes as input a valid Roman number string s and returns the integer it
corresponds to.

Hint: Start by solving the problem assuming no exception cases.

Solution: The brute-force approach is to scan s from left to right, adding the value for the corre-
sponding symbol unless the symbol subsequent to the one being considered has a higher value, in
which case the pair is one of the six exception cases and the value of the pair is added.

A slightly easier-to-code solution is to start from the right, and if the symbol after the current
one is greater than it, we subtract the current symbol. The code below performs the right-to-left

76

iteration. It does not check that when a smaller symbol appears to the left of a larger one that it is
one of the six allowed exceptions, so it will, for example, return 99 for “IC”.

def roman_to_integer(s):
T={1I':1, 'v': 5, 'X": 10, 'L': 50, 'C’': 100, 'D’': 560, 'M’': 1000}

return functools.reduce(
lambda val, i: val + (-T[s[i]] if T([s[i]] < T[s[i + 1]] else T[s[i]]),
reversed (range(len(s) - 1)), T[s[-1]1)

Each character of s is processed in O(1) time, yielding an O(n) overall time complexity, where n is
the length of s.

Variant: Write a program that takes as input a string of Roman number symbols and checks whether
that string is valid.

Variant: Write a program that takes as input a positive integer n and returns a shortest valid simple
Roman number string representing n.

6.10 CompUTE ALL VALID IP ADDRESSES

A decimal string is a string consisting of digits between 0 and 9. Internet Protocol (IP) addresses can
be written as four decimal strings separated by periods, e.g., 192.168.1.201. A careless programmer
mangles a string representing an IP address in such a way that all the periods vanish.

Write a program that determines where to add periods to a decimal string so that the resulting
string is a valid IP address. There may be more than one valid IP address corresponding to a string,
in which case you should print all possibilities.

For example, if the mangled string is “19216811” then two corresponding IP addresses are
192.168.1.1 and 19.216.81.1. (There are seven other possible IP addresses for this string.)

Hint: Use nested loops.

Solution: There are three periods in a valid IP address, so we can enumerate all possible placements
of these periods, and check whether all four corresponding substrings are between 0 and 255. We
can reduce the number of placements considered by spacing the periods 1 to 3 characters apart. We
can also prune by stopping as soon as a substring is not valid.

For example, if the string is “19216811”, we could put the first period after “1”, “19”, and “192”.
If the first part is “1”, the second part could be “9”, “92”, and “921”. Of these, “921” is illegal so we
do not continue with it.
def get_valid_ip_address(s):

def is_valid_part(s):

'00’, '000’', '01’, etc. are not valid, but '®’ is valid.
return len(s) == 1 or (s[0] != '0’ and int(s) <= 255)

result, parts = [], [None] * 4
for i in range(l, min(4, len(s))):
parts[0] = s[:i]
if is_valid_part(parts([0]):
for j in range(1, min(len(s) - i, 4)):
parts[1] = s[i:i + j]
if is_valid_part(parts[1]):

for k in range(l, min(len(s) - i - j, 4)):
parts[2], parts[3] = s[i + j:i + j + k], s[i + j + k:]
if is_valid_part(parts[2]) and is_valid_part(parts([3]):
result.append(’'.’.join(parts))
return result

The total number of IP addresses is a constant (232), implying an O(1) time complexity for the above
algorithm.

Variant: Solve the analogous problem when the number of periods is a parameter k and the string
length is unbounded.

6.11 WRITE A STRING SINUSOIDALLY

We llustrate what it means to write a string in sinusoidal fashion by means of an example. The string
e o 1
“Hello.World!” written in sinusoidal fashion is H 1 o W r d

(Here . denotes a blank.)
Define the snakestring of s to be the left-right top-to-bottom sequence in which characters appear

when s is written in sinusoidal fashion. For example, the snakestring string for “Hello.World!” is
“e_IHloWrdlo!”.

Write a program which takes as input a string s and returns the snakestring of s.
Hint: Try concrete examples, and look for periodicity.

Solution: The brute-force approach is to populate a 3 x n 2D array of characters, initialized to null
entries. We then write the string in sinusoidal manner in this array. Finally, we read out the non-null
characters in row-major manner.

However, observe that the result begins with the characters s[1],s[5],5[9],..., followed by
s[0],s[2],s[4], ..., and then s[3],s[7],s[11],.... Therefore, we can create the snakestring directly,

with three iterations through s.
def snake_string(s):
result = []
Outputs the first row, i.e., s[1], s[5], s[9], ...
for i in range(1l, len(s), 4):
result.append(s[i])
Outputs the second row, i.e., s[0], s[2], s[4],
for i in range(®, len(s), 2):
result.append(s[i])
Outputs the third row, i.e., s[3], s[7], s[11], ...
for i in range(3, len(s), 4):
result.append(s[i])
return '’.join(result)

Python solution uses slicing with right steps.
def snake_string_pythonic(s):
return s[1::4] + s[::2] + s[3::4]

78

Let nbe the length of s. Each of the three iterations takes O(n) time, implying an O(n) time complexity.

6.12 IMPLEMENT RUN-LENGTH ENCODING

Run-length encoding (RLE) compression offers a fast way to do efficient on-the-fly compression
and decompression of strings. The idea is simple—encode successive repeated characters by the
repetition count and the character. For example, the RLE of “aaaabcccaa” is “4alb3c2a”. The
decoding of “3e4f2e” returns “eeeffffee”.

Implement run-length encoding and decoding functions. Assume the string to be encoded consists
of letters of the alphabet, with no digits, and the string to be decoded is a valid encoding.

Hint: This is similar to converting between binary and string representations.

Solution: First we consider the decoding function. Every encoded string is a repetition of a string of
digits followed by a single character. The string of digits is the decimal representation of a positive
integer. To generate the decoded string, we need to convert this sequence of digits into its integer
equivalent and then write the character that many times. We do this for each character.
The encoding function requires an integer (the repetition count) to string conversion.
def decoding(s):
count, result = 0, []
for c in s:
if c.isdigit(Q):
count = count * 10 + int(c)
else: # c is a letter of alphabet.
result.append(c * count) # Appends count copies of c¢ to result.

count = 0
return '’'.join(result)

def encoding(s):
result, count = [], 1
for i in range(l, len(s) + 1):
if i == len(s) or s[i] != s[i - 1]:
Found new character so write the count of previous character.
result.append(str(count) + s[i - 1])
count = 1
else: # s[i] == s[i - 1].
count += 1
return '’'.join(result)

The time complexity is O(n), where n is the length of the string.

6.13 FIND THE FIRST OCCURRENCE OF A SUBSTRING

A good string search algorithm is fundamental to the performance of many applications. Several
clever algorithms have been proposed for string search, each with its own trade-offs. As a result,
there is no single perfect answer. If someone asks you this question in an interview, the best way
to approach this problem would be to work through one good algorithm in detail and discuss at a
high level other algorithms.

79

Given two strings s (the “search string”) and ¢ (the “text”), find the first occurrence of s in ¢.
Hint: Form a signature from a string.

Solution: The brute-force algorithm uses two nested loops, the first iterates through ¢, the second
tests if s occurs starting at the current index in t. The worst-case complexity is high. If ¢ consists of
n’a’s and s is n/2 ‘a’s followed by a 'b’, it will perform n/2 unsuccessful string compares, each of
which entails 7/2 + 1 character compares, so the brute-force algorithm’s time complexity is O(n?).

Intuitively, the brute-force algorithm is slow because it advances through ¢ one character at a
time, and potentially does O(m) computation with each advance, where m is the length of s.

There are three linear time string matching algorithms: KMP, Boyer-Moore, and Rabin-Karp. Of
these, Rabin-Karp is by far the simplest to understand and implement.

The Rabin-Karp algorithm is very similar to the brute-force algorithm, but it does not require
the second loop. Instead it uses the concept of a “fingerprint”. Specifically, let m be the length of
s. It computes hash codes of each substring whose length is m—these are the fingerprints. The key
to efficiency is using an incremental hash function, such as a function with the property that the
hash code of a string is an additive function of each individual character. (Such a hash function
is sometimes referred to as a rolling hash.) For such a function, getting the hash code of a sliding
window of characters is very fast for each shift.

For example, let the strings consist of letters from {A,C, G, T}. Suppose t is “GACGCCA” and
s is “CGC”. Define the code for “A” to be 0, the code for “C” to be 1, etc. Let the hash function
be the decimal number formed by the integer codes for the letters. The hash code of s is 121. The
hash code of the first three characters of ¢, “GAC”, is 201, so s cannot be the first three characters
of t. Continuing, the next substring of t is “ACG”, whose hash code can be computed from 201 by
subtracting 200, then multiplying by 10, and finally adding 2. This yields 12, so there no match
yet. We then reach “CGC” whose hash code, 121, is derived in a similar manner. We are not done
yet—there may be a collision. We check explicitly if the substring matches s, which in this case it
does.

For the Rabin-Karp algorithm to run in linear time, we need a good hash function, to reduce the
likelihood of collisions, which entail potentially time consuming string equality checks.
def rabin_karp(t, s):

if len(s) > len(t):
return -1 # s is not a substring of t.

BASE = 26

Hash codes for the substring of t and s.

t_hash = functools.reduce(lambda h, c: h * BASE + ord(c), t[:len(s)], ®)
s_hash = functools.reduce(lambda h, c: h * BASE + ord(c), s, 0)

power_s = BASE**max(len(s) - 1, 0) # BASEA[s-1].

for i in range(len(s), len(t)):
Checks the two substrings are actually equal or not, to protect
against hash collision.
if t_hash == s_hash and t[i - len(s):i] == s:
return i - len(s) # Found a match.

Uses rolling hash to compute the hash code.

t_hash -= ord(t[i - len(s)]) * power_s
t_hash = t_hash * BASE + ord(t[i])

80

Tries to match s and t[-len(s):].
if t_hash == s_hash and t[-len(s):] == s:
return len(t) - len(s)
return -1 # s is not a substring of t.
For a good hash function, the time complexity is O(m + n), independent of the inputs s and ¢, where
m is the length of s and 7 is the length of ¢.

81

CHAPTER

7

. Linked Lists

The S-expressions are formed according to the following recursive rules.
1. The atomic symbols p,, p2, etc., are S-expressions.
2. A null expression A is also admitted.
3. Ifeisan S-expression so is (€).
4. If ey and e; are S-expressions so is (e1, €2).

— “Recursive Functions Of Symbolic Expressions,”
J. McCarthy, 1959

A list implements an ordered collection of values, which may include repetitions. Sepcifically, a
singly linked list is a data structure that contains a sequence of nodes such that each node contains
an object and a reference to the next node in the list. The first node is referred to as the head and the
last node is referred to as the tail; the tail’s next field is null. The structure of a singly linked list is
given in Figure 7.1. There are many variants of linked lists, e.g., in a doubly linked list, each node has
a link to its predecessor; similarly, a sentinel node or a self-loop can be used instead of null to mark
the end of the list. The structure of a doubly linked list is given in Figure 7.2.

A list is similar to an array in that it contains objects in a linear order. The key differences are that
inserting and deleting elements in a list has time complexity O(1). On the other hand, obtaining the
kth element in a list is expensive, having O(n) time complexity. Lists are usually building blocks of
more complex data structures. However, as we will see in this chapter, they can be the subject of
tricky problems in their own right.

2 | EE s [FH—5 [F+—: X

0x1354 0x1200 0x2200 0x1000 0x21160

Figure 7.1: Example of a singly linked list. The number in hex below a node indicates the memory address of that node.

X2 [[[| e—. | 3]

Figure 7.2: Example of a doubly linked list.

For all problems in this chapter, unless otherwise stated, each node has two entries—a data field,
and a next field, which points to the next node in the list, with the next field of the last node being
null. Its prototype is as follows:

class ListNode:
def __init__(self, data=0, next_node=None):
self.data = data
self.next = next_node

82

Linked lists boot camp

There are two types of list-related problems—those where you have to implement your own list,
and those where you have to exploit the standard list library. We will review both these aspects
here, starting with implementation, then moving on to list libraries.

Implementing a basic list API—search, insert, delete—for singly linked lists is an excellent way
to become comfortable with lists.
Search for a key:
def search_list(L, key):
while L and L.data != key:

L = L.next

If key was not present in the list, L will have become null.
return L

Insert a new node after a specified node:

Insert new_node after node.
def insert_after (node, new_node):
new_node.next = node.next
node.next = new_node

Delete a node:

Delete the node past this one. Assume node is not a tail.
def delete_after (node):
node.next = node.next.next

Insert and delete are local operations and have O(1) time complexity. Search requires traversing the
entire list, e.g., if the key is at the last node or is absent, so its time complexity is O(n), where n is
the number of nodes.

List problems often have a simple brute-force solution that uses O(n) space, but a subtler solution
that uses the existing list nodes to reduce space complexity to O(1).

Very often, a problem on lists is conceptually simple, and is more about cleanly coding what'’s
specified, rather than designing an algorithm.

Consider using a dummy head (sometimes referred to as a sentinel) to avoid having to check
for empty lists. This simplifies code, and makes bugs less likely.

It’s easy to forget to update next (and previous for double linked list) for the head and tail.

Algorithms operating on singly linked lists often benefit from using two iterators, one ahead of
the other, or one advancing quicker than the other.

Table 7.1: Top Tips for Linked Lists

Know your linked list libraries

We now review the standard linked list library, with the reminder that many interview problems
that are directly concerned with lists require you to write your own list class.

Under the hood, the Python list type is typically implemented as a dynamically resized array,
and the key methods on it are described on Page 38. This chapter is concerned specifically with

83

linked lists, which are not a standard type in Python. We define our own singly and doubly linked
list types. Some of the key methods on these lists include returning the head/tail, adding an element

at the head/tail, returning the value stored at the head/tail, and deleting the head, tail, or arbitrary
node in the list.

7.1 MERGE TWO SORTED LISTS

Consider two singly linked lists in which each node holds a number. Assume the lists are sorted,
i.e., numbers in the lists appear in ascending order within each list. The merge of the two lists is a
list consisting of the nodes of the two lists in which numbers appear in ascending order. Merge is
illustrated in Figure 7.3.

| 2 [~ 5 [—1 7 [X]

0x16000 0x1240 0x1830
ENE
0x2430 0x2700

(a) Two sorted lists.

R | 2 [+ EENE 5 [— 7 |

0x1000 0x2430 0x1240 0x1830 0x2700

(b) The merge of the lists in (a).

Figure 7.3: Merging sorted lists.

Write a program that takes two lists, assumed to be sorted, and returns their merge. The only field
your program can change in a node is its next field.

Hint: Two sorted arrays can be merged using two indices. For lists, take care when one iterator reaches the
end.

Solution: A naive approach is to append the two lists together and sort the resulting list. The
drawback of this approach is that it does not use the fact that the initial lists are sorted. The time
complexity is that of sorting, which is O((n + m) log(n + m)), where n and m are the lengths of each
of the two input lists.

A better approach, in terms of time complexity, is to traverse the two lists, always choosing the
node containing the smaller key to continue traversing from.
def merge_two_sorted_lists(L1l, L2):

Creates a placeholder for the result.

dummy_head = tail = ListNode()

while L1 and L2:
if L1.data < L2.data:
tail.next, L1 = L1, L1.next
else:
tail.next, L2 = L2, L2.next
tail = tail.next

Appends the remaining nodes of L1 or L2
tail.next = L1 or L2
return dummy_head.next

The worst-case, from a runtime perspective, corresponds to the case when the lists are of comparable
length, so the time complexity is O(n + m). (In the best-case, one list is much shorter than the other
and all its entries appear at the beginning of the merged list.) Since we reuse the existing nodes, the
space complexity is O(1).

Variant: Solve the same problem when the lists are doubly linked.

7.2 REVERSE A SINGLE SUBLIST

This problem is concerned with reversing a sublist within a list. See Figure 7.4 for an example of
sublist reversal.

ENE | 3 |+ ENE 7 |— 2 [X]

0x2700 0x2430 0x12460 0x18360 0x1000

Figure 7.4: The result of reversing the sublist consisting of the second to the fourth nodes, inclusive, in the list in
Figure 7.5 on the following page.

Write a program which takes a singly linked list L and two integers s and f as arguments, and
reverses the order of the nodes from the sth node to fth node, inclusive. The numbering begins at
1, i.e., the head node is the first node. Do not allocate additional nodes.

Hint: Focus on the successor fields which have to be updated.

Solution: The direct approach is to extract the sublist, reverse it, and splice it back in. The drawback
for this approach is that it requires two passes over the sublist.

The update can be performed with a single pass by combining the identification of the sublist
with its reversal. We identify the start of sublist by using an iteration to get the sth node and
its predecessor. Once we reach the sth node, we start the reversing process and keep counting.
When we reach the fth node, we stop the reversion process and link the reverted section with the
unreverted sections.

def reverse_sublist(L, start, finish):
dummy_head = sublist_head = ListNode(®, L)
for _ in range(1l, start):

sublist_head = sublist_head.next

Reverses sublist.
sublist_iter = sublist_head.next
for _ in range(finish - start):
temp = sublist_iter.next
sublist_iter.next, temp.next, sublist_head.next = (temp.next,
sublist_head.next,
temp)
return dummy_head.next
The time complexity is dominated by the search for the fth node, i.e., O(f).
Variant: Write a function that reverses a singly linked list. The function should use no more than
constant storage beyond that needed for the list itself. The desired transformation is illustrated in

Figure 7.5 on the next page.

85

Variant: Write a program which takes as input a singly linked list L and a nonnegative integer k,
and reverses the list k nodes at a time. If the number of nodes 7 in the list is not a multiple of k,
leave the last n mod k nodes unchanged. Do not change the data stored within a node.

N | 7 |+ 5 [o— 3 |

0x2700 0x1830 Ox1240 0x2430 0x1000

Figure 7.5: The reversed list for the list in Figure 7.3(b) on Page 84. Note that no new nodes have been allocated.

7.3 TEST FOR CYCLICITY

Although a linked list is supposed to be a sequence of nodes ending in null, it is possible to create
a cycle in a linked list by making the next field of an element reference to one of the earlier nodes.

Write a program that takes the head of a singly linked list and returns null if there does not exist a
cycle, and the node at the start of the cycle, if a cycle is present. (You do not know the length of the
list in advance.)

Hint: Consider using two iterators, one fast and one slow.

Solution: This problem has several solutions. If space is not an issue, the simplest approach is to
explore nodes via the next field starting from the head and storing visited nodes in a hash table—a
cycle exists if and only if we visit a node already in the hash table. If no cycle exists, the search ends
at the tail (often represented by having the next field set to null). This solution requires O(n) space,
where 7 is the number of nodes in the list.

A brute-force approach that does not use additional storage and does not modify the list is to
traverse the list in two loops—the outer loop traverses the nodes one-by-one, and the inner loop
starts from the head, and traverses as many nodes as the outer loop has gone through so far. If the
node being visited by the outer loop is visited twice, a loop has been detected. (If the outer loop
encounters the end of the list, no cycle exists.) This approach has O(n?) time complexity.

This idea can be made to work in linear time—use a slow iterator and a fast iterator to traverse
the list. In each iteration, advance the slow iterator by one and the fast iterator by two. The list has
a cycle if and only if the two iterators meet. The reasoning is as follows: if the fast iterator jumps
over the slow iterator, the slow iterator will equal the fast iterator in the next step.

Now, assuming that we have detected a cycle using the above method, we can find the start
of the cycle, by first calculating the cycle length C. Once we know there is a cycle, and we have a
node on it, it is trivial to compute the cycle length. To find the first node on the cycle, we use two
iterators, one of which is C ahead of the other. We advance them in tandem, and when they meet,
that node must be the first node on the cycle.

The code to do this traversal is quite simple:

def has_cycle(head):
def cycle_len(end):
start, step = end, 0
while True:
step += 1
start = start.next
if start is end:
return step

fast = slow = head
while fast and fast.next and fast.next.next:
slow, fast = slow.next, fast.next.next
if slow is fast:
Finds the start of the cycle.
cycle_len_advanced_iter = head
for _ in range(cycle_len(slow)):
cycle_len_advanced_iter = cycle_len_advanced_iter.next

it = head
Both iterators advance in tandem.
while it is not cycle_len_advanced_iter:
it = it.next
cycle_len_advanced_iter = cycle_len_advanced_iter.next
return it # iter is the start of cycle.
return None # No cycle.
Let F be the number of nodes to the start of the cycle, C the number of nodes on the cycle, and n the
total number of nodes. Then the time complexity is O(F) + O(C) = O(n)—O(F) for both pointers to

reach the cycle, and O(C) for them to overlap once the slower one enters the cycle.

Variant: The following program purports to compute the beginning of the cycle without determining
the length of the cycle; it has the benefit of being more succinct than the code listed above. Is the
program correct?
def has_cycle(head):
fast = slow = head
while fast and fast.next and fast.next.next:
slow, fast = slow.next, fast.next.next
if slow is fast: # There is a cycle.
Tries to find the start of the cycle.
slow = head
Both pointers advance at the same time.
while slow is not fast:
slow, fast = slow.next, fast.next
return slow # slow is the start of cycle.
return None # No cycle.

74 TEST FOR OVERLAPPING LISTS—LISTS ARE CYCLE-FREE

Given two singly linked lists there may be list nodes that are common to both. (This may not be a
bug—it may be desirable from the perspective of reducing memory footprint, as in the flyweight
pattern, or maintaining a canonical form.) For example, the lists in Figure 7.6 on the following page
overlap at Node I.

Write a program that takes two cycle-free singly linked lists, and determines if there exists a node
that is common to both lists.

Hint: Solve the simple cases first.

Solution: A brute-force approach is to store one list’s nodes in a hash table, and then iterate through
the nodes of the other, testing each for presence in the hash table. This takes O(n) time and O(n)
space, where 7 is the total number of nodes.

87

S | IX

Figure 7.6: Example of overlapping lists.

We can avoid the extra space by using two nested loops, one iterating through the first list, and
the other to search the second for the node being processed in the first list. However, the time
complexity is O(n?).

The lists overlap if and only if both have the same tail node: once the lists converge at a node,
they cannot diverge at a later node. Therefore, checking for overlap amounts to finding the tail
nodes for each list.

To find the first overlapping node, we first compute the length of each list. The first overlapping
node is determined by advancing through the longer list by the difference in lengths, and then

advancing through both lists in tandem, stopping at the first common node. If we reach the end of
a list without fmdmg a common node, the hsts do not overlap

def overlapp1ng no_ cycle llsts(Ll LZ)
def length(L):
length = @
while L:
length += 1
L = L.next
return length

Li_len, L2_len = length(L1l), length(L2)
if L1_len > L2_len:
L1, L2 = L2, L1 # L2 is the longer list
Advances the longer list to get equal length lists.
for _ in range(abs(Li_len - L2_len)):
L2 = L2.next

while L1 and L2 and L1 is not L2:
L1, L2 = Ll.next, L2.next
return L1 # None 1mp11es there is no overlap between L1 and L2

The time complex1ty is O(n) and the space complex1ty is 0(1)

7.5 TEST FOR OVERLAPPING LISTS—LISTS MAY HAVE CYCLES

Solve Problem 7.4 on the previous page for the case where the lists may each or both have a cycle.
If such a node exists, return a node that appears first when traversing the lists. This node may not
be unique—if one node ends in a cycle, the first cycle node encountered when traversing it may
be different from the first cycle node encountered when traversing the second list, even though the
cycle is the same. In such cases, you may return either of the two nodes.

For example, Figure 7.7 on the facing page shows an example of lists which overlap and have
cycles. For this example, both A and B are acceptable answers.

88

Figure 7.7: Overlapping lists.

Hint: Use case analysis. What if both lists have cycles? What if they end in a common cycle? What if one list
has cycle and the other does not?

Solution: This problem is easy to solve using O(n) time and space complexity, where 7 is the total
number of nodes, using the hash table approach in Solution 7.4 on Page 87.

We can improve space complexity by studying different cases. The easiest case is when neither
list is cyclic, which we can determine using Solution 7.3 on Page 86. In this case, we can check
overlap using the technique in Solution 7.4 on Page 87.

If one list is cyclic, and the other is not, they cannot overlap, so we are done.

This leaves us with the case that both lists are cyclic. In this case, if they overlap, the cycles must
be identical.

There are two subcases: the paths to the cycle merge before the cycle, in which case there is a
unique first node that is common, or the paths reach the cycle at different nodes on the cycle. For
the first case, we can use the approach of Solution 7.4 on Page 87. For the second case, we use the
technique in Solution 7.3 on Page 86.
def overlapping_lists(L1l, L2):

Store the start of cycle if any.
rootl, root2 = has_cycle(Ll), has_cycle(L2)

if not rootl and not root2:
Both lists don’'t have cycles.
return overlapping_no_cycle_lists(L1l, L2)
elif (rootl and not root2) or (not rootl and root2):
One list has cycle, one list has no cycle.
return None
Both lists have cycles.
temp = root2
while True:
temp = temp.next
if temp is rootl or temp is root2:
break

L1 and L2 do not end in the same cycle.
if temp is not rootl:
return None # Cycles are disjoint.

Calculates the distance between a and b.
def distance(a, b):
dis = 0
while a is not b:
a = a.next

89

dis += 1
return dis

L1 and L2 end in the same cycle, locate the overlapping node if they
first overlap before cycle starts.
steml_length, stem2_length = distance(Ll, rootl), distance(L2, root2)
if steml_length > stem2_length:

L2, L1 = L1, L2

rootl, root2 = root2, rootl
for _ in range(abs(steml_length - stem2_length)):

L2 = L2.next
while L1 is not L2 and L1 is not rootl and L2 is not root2:

L1, L2 = Ll.next, L2.next

If L1 == L2 before reaching rootl, it means the overlap first occurs
before the cycle starts; otherwise, the first overlapping node is not
unique, we can return any node on the cycle.

return Ll 1f L1 is LZ else rootl

The algorlthm has time complex1ty O(n + m) where n and m are the lengths of the input hsts and
space complexity O(1).

7.6 DELETE A NODE FROM A SINGLY LINKED LIST

Given a node in a singly linked list, deleting it in O(1) time appears impossible because its prede-
cessor’s next field has to be updated. Surprisingly, it can be done with one small caveat—the node
to delete cannot be the last one in the list and it is easy to copy the value part of a node.

Write a program which deletes a node in a singly linked list. The input node is guaranteed not to
be the tail node.

Hint: Instead of deleting the node, can you delete its successor and still achieve the desired configuration?

Solution: Given the pointer to a node, it is impossible to delete it from the list without modifying
its predecessor’s next pointer and the only way to get to the predecessor is to traverse the list from
head, which requires O(n) time, where n is the number of nodes in the list.

Given a node, it is easy to delete its successor, since this just requires updating the next pointer
of the current node. If we copy the value part of the next node to the current node, and then delete
the next node we have effechvely deleted the current node The tlme complex1ty is 0(1)

Assumes node to_ delete is not taJl

def deletion_from_list(node_to_delete):
node_to_delete.data = node_to_delete.next.data
node_to_delete.next = node_to_delete.next.next

7.7 REMOVE THE kTH LAST ELEMENT FROM A LIST

Without knowing the length of a linked list, it is not trivial to delete the kth last element in a singly
linked list.

Given a singly linked list and an integer k, write a program to remove the kth last element from the
list. Your algorithm cannot use more than a few words of storage, regardless of the length of the
list. In particular, you cannot assume that it is possible to record the length of the list.

90

Hint: If you know the length of the list, can you find the kth last node using two iterators?

Solution: A brute-force approach is to compute the length with one pass, and then use that to
determine which node to delete in a second pass. A drawback of this approach is that it entails two
passes over the data, which is slow, e.g., if traversing the list entails disc accesses.

We use two iterators to traverse the list. The first iterator is advanced by k steps, and then the
two iterators advance in tandem. When the first iterator reaches the tail, the second iterator is at
the (k + 1)th last node, and we can remove the kth node.

#-AssuﬁeglL Aas at leastvk nodes, deletes the k-th last node in L.
def remove_kth_last(L, k):

dummy_head = ListNode(®, L)

first = dummy_head.next

for _ in range(k):
first = first.next

second = dummy_head
while first:
first, second = first.next, second.next
second points to the (k + 1)-th last node, deletes its successor.
second.next = second.next.next
return dummy_head.next

The time complexity is that of list traversal, i.e., O(n), where n is the length of the list. The space
complexity is O(1), since there are only two iterators.

Compared to the brute-force approach, if k is small enough that we can keep the set of nodes
between the two iterators in memory, but the list is too big to fit in memory, the two-iterator
approach halves the number of disc accesses.

7.8 REMOVE DUPLICATES FROM A SORTED LIST

This problem is concerned with removing duplicates from a sorted list of integers. See Figure 7.8
for an example.

{2 T3 2 T+ 5 T3+ s T+ 7 T3+ n [+ 1 [X]

9x1000 0x2110 0x1830 0x1240 0x2200 0x1200 0x1354

(a) List before removing duplicates.

| 2 [~ ENE ENE 7 1 |X

0x16060 0x18360 0x1240 0x2260 0x1208

(b) The list in (a) after removing duplicates.

Figure 7.8: Example of duplicate removal.

Write a program that takes as input a singly linked list of integers in sorted order, and removes
duplicates from it. The list should be sorted.

Hint: Focus on the successor fields which have to be updated.

Solution: A brute-force algorithm is to create a new list, using a hash table to test if a value has
already been added to the new list. Alternatively, we could search in the new list itself to see if

91

[s T3 T2 T+ 2 T4+ s X

0x2200 0x1606 0x21160 0x1354 0x1206

Figure 7.9: The result of applying a right cyclic shift by 3 to the list in Figure 7.1 on Page 82. Note that no new nodes
have been allocated.

the candidate value already is present. If the length of the list is n, the first approach requires O(n)
additional space for the hash table, and the second requires O(n?) time to perform the lookups. Both
allocate n nodes for the new list.
A better approach is to exploit the sorted nature of the list. As we traverse the list, we remove
all successive nodes with the same value as the current node.
def remove_duplicates(L):
it = L
while it:
Uses next_distinct to find the next distinct value.
next_distinct = it.next
while next_distinct and next_distinct.data == it.data:
next_distinct = next_distinct.next
it.next = next_distinct
it = next_distinct
return L
Determining the time complexity requires a little amortized analysis. A single node may take
more than O(1) time to process if there are many successive nodes with the same value. A clearer
justification for the time complexity is that each link is traversed once, so the time complexity is
O(n). The space complexity is O(1).

Variant: Let m be a positive integer and L a sorted singly linked list of integers. For each integer k,
if k appears more than m times in L, remove all nodes from L containing k.

7.9 IMPLEMENT CYCLIC RIGHT SHIFT FOR SINGLY LINKED LISTS

This problem is concerned with performing a cyclic right shift on a list.

Write a program that takes as input a singly linked list and a nonnegative integer k, and returns the
list cyclically shifted to the right by k. See Figure 7.9 for an example of a cyclic right shift.

Hint: How does this problem differ from rotating an array?

Solution: A brute-force strategy is to right shift the list by one node k times. Each right shift by a
single node entails finding the tail, and its predecessor. The tail is prepended to the current head,
and its original predecessor’s successor is set to null to make it the new tail. The time complexity
is O(kn), and the space complexity is O(1), where n is the number of nodes in the list.

Note that k may be larger than n. If so, it is equivalent to shift by k mod n, so we assume k < n.
The key to improving upon the brute-force approach is to use the fact that linked lists can be cut
and the sublists reassembled very efficiently. First we find the tail node t. Since the successor of the
tail is the original head, we update #'s successor. The original head is to become the kth node from
the start of the new list. Therefore, the new head is the (n — k)th node in the initial list.
def cyclically_right_shift_list(L, k):

if not L:

92

return L

Computes the length of L and the tail.
tail, n=1, 1
while tail.next:

n += 1

tail = tail.next

k %= n
if k == 0:
return L

tail.next = L # Makes a cycle by connecting the tail to the head.
steps_to_new_head, new_tail = n - k, tail
while steps_to_new_head:

steps_to_new_head -= 1

new_tail = new_tail.next

new_head = new_tail.next
new_tail.next = None
return new_head

The time complexity is O(n), and the space complexity is O(1).

7.10 IMPLEMENT EVEN-ODD MERGE

Consider a singly linked list whose nodes are numbered starting at 0. Define the even-odd merge of
the list to be the list consisting of the even-numbered nodes followed by the odd-numbered nodes.
The even-odd merge is illustrated in Figure 7.10.

[- [—{ F—" ¥

0x1000 0x1240 0x1830 0x2110 0x22008

(a) The initial list is L. The number in hex below a node indicates the memory address of that node.

o [% [~ L F— 1 [F—{ 5 ¥

0x1000 0x1830 0x2200 0x1240 0x2110

(b) The even-odd merge of L—note that no new nodes have been allocated.

Figure 7.10: Even-odd merge example.

Write a program that computes the even-odd merge.
Hint: Use temporary additional storage.

Solution: The brute-force algorithm is to allocate new nodes and compute two new lists, one for
the even and one for the odd nodes. The result is the first list concatenated with the second list.
The time and space complexity are both O(n).

However, we can avoid the extra space by reusing the existing list nodes. We do this by iterating
through the list, and appending even elements to one list and odd elements to another list. We use
an indicator variable to tell us which list to append to. Finally we append the odd list to the even
list.

93

def even_odd_merge(L):
if not L:
return L

even_dummy_head, odd_dummy_head = ListNode(®), ListNode(0®)
tails, turn = [even_dummy_head, odd_dummy_head], 0
while L:

tails[turn].next = L

L = L.next

tails[turn] = tails[turn].next

turn A= 1 # Alternate between even and odd.
tails[1].next = None
tails[0].next = odd_dummy_head.next
return even_ dummy_head next

The time complex1ty is O(n) and the space complex1ty is 0(1).

7.11 TEST WHETHER A SINGLY LINKED LIST IS PALINDROMIC

It is straightforward to check whether the sequence stored in an array is a palindrome. However,
if this sequence is stored as a singly linked list, the problem of detecting palindromicity becomes
more challenging. See Figure 7.1 on Page 82 for an example of a palindromic singly linked list.

Write a program that tests whether a singly linked list is palindromic.
Hint: It's easy if you can traverse the list forwards and backwards simultaneously.

Solution: A brute-force algorithm is to compare the first and last nodes, then the second and
second-to-last nodes, etc. The time complexity is O(n?), where 1 is the number of nodes in the list.
The space complexity is O(1).

The O(n?) complexity comes from having to repeatedly traverse the list to identify the last,
second-to-last, etc. Getting the first node in a singly linked list is an O(1) time operation. This
suggests paying a one-time cost of O(n) time complexity to get the reverse of the second half of the
original list, after which testing palindromicity of the original list reduces to testing if the first half
and the reversed second half are equal. This approach changes the list passed in, but the reversed
subhst can be reversed agam to restore the orlgmal list.

def is_ 11nked llst a_ pa11ndrome(L)
Finds the second half of L.
slow = fast = L
while fast and fast.next:
fast, slow = fast.next.next, slow.next

Compares the first half and the reversed second half lists.
first_half_iter, second_half_iter = L, reverse_linked_list(slow)
while second_half_iter and first_half_iter:

if second_half_iter.data != first_half_iter.data:

return False
second_half_iter, first_half_iter = (second_half_iter.next,
first_half_iter.next)

return True

The time complex1ty is O(n) The space complex1ty is 0(1)

94

Variant: Solve the same problem when the list is doubly linked and you have pointers to the head
and the tail.

7.12 IMPLEMENT LIST PIVOTING

For any integer k, the pivot of a list of integers with respect to k is that list with its nodes reordered so
that all nodes containing keys less than k appear before nodes containing k, and all nodes containing
keys greater than k appear after the nodes containing k. See Figure 7.11 for an example of pivoting.

H—{ s T 2 [2 [d{ u [+ 7 TG+ 5 [+{ = [X]

0x1830 0x2110 0x10600 0x1200 0x2260 0x1240 0x1354

(a) A list to be pivoted.

[h—{ s [+ 2 T3+ 2 T+ s T+ 7 T3+ o T3+ u [¥]

0x1830 0x2110 0x1000 0x1240 0x2200 0x1208 0x1354

(b) The result of pivoting the list in (a) with k = 7.

Figure 7.11: List pivoting.

Implement a function which takes as input a singly linked list and an integer k and performs a pivot
of the list with respect to k. The relative ordering of nodes that appear before k, and after k, must
remain unchanged; the same must hold for nodes holding keys equal to k.

Hint: Form the three regions independently.

Solution: A brute-force approach is to form three lists by iterating through the list and writing
values into one of the three new lists based on whether the current value is less than, equal to, or
greater than k. We then traverse the list from the head, and overwrite values in the original list from
the less than, then equal to, and finally greater than lists. The time and space complexity are O(n),
where 7 is the number of nodes in the list.

A key observation is that we do not really need to create new nodes for the three lists. Instead
we reorganize the original list nodes into these three lists in a single traversal of the original list.
Since the traversal is in order, the individual lists preserve the ordering. We combine these three
lists in the final step.
def list_pivoting(L, x):

less_head = less_iter = ListNode()
equal_head = equal_iter = ListNode()
greater_head = greater_iter = ListNode()
Populates the three lists.
while L:
if L.data < x:
less_iter.next = L
less_iter = less_iter.next
elif L.data == x:
equal_iter.next = L
equal_iter = equal_iter.next
else: # L.data > x.
greater_iter.next = L
greater_iter = greater_iter.next
L = L.next

95

Combines the three lists.
greater_iter.next = None
equal_iter.next = greater_head.next
less_iter.next = equal_head.next
return less_head.next

The time to compute the three lists is O(n). Combining the lists takes O(1) time, yielding an overall
O(n) time complexity. The space complexity is O(1).

7.13 ADD LIST-BASED INTEGERS

A singly linked list whose nodes contain digits can be viewed as an integer, with the least significant
digit coming first. Such a representation can be used to represent unbounded integers. This problem
is concerned with adding integers represented in this fashion. See Figure 7.12 for an example.

3 [F— 1 [F— ¢ XI[}——7 [F—{0 [F—2 X
(a) Two lists.
o T4—{ 2 [F—{ s T4+—{ 1 X

(b) The sum of the two lists in (a).

Figure 7.12: List-based interpretation of 413 + 907 = 1320.

Write a program which takes two singly linked lists of digits, and returns the list corresponding to
the sum of the integers they represent. The least significant digit comes first.

Hint: First, solve the problem assuming no pair of corresponding digits sum to more than 9.

Solution: Note that we cannot simply convert the lists to integers, since the integer word length is
fixed by the machine architecture, and the lists can be arbitrarily long.

Instead we mimic the grade-school algorithm, i.e., we compute the sum of the digits in corre-
sponding nodes in the two lists. A key nuance of the computation is handling the carry-out. The
algorithm continues processing input until both lists are exhausted and there is no remaining carry.
def add_two_numbers(Ll, L2):
place_iter = dummy_head = ListNode()
carry = 0
while L1 or L2 or carry:

val = carry + (Ll.data if L1 else ®) + (L2.data if L2 else 0)

Ll = Ll.next if L1 else None

L2 = L2.next if L2 else None

place_iter.next = ListNode(val % 10)

carry, place_iter = val // 10, place_iter.next
return dummy_head.next

The time complexity is O(n + m) and the space complexity is O(max(n, m)), where n and m are the
lengths of the two lists.

Variant: Solve the same problem when integers are represented as lists of digits with the most
significant digit comes first.

96

CHAPTER

a3 VAT TR R

Stacks and Queues

E]

Linear lists in which insertions, deletions, and accesses to val-
ues occur almost always at the first or the last node are very
frequently encountered, and we give them special names . . .

— “The Art of Computer Programming, Volume 1,”
D. E. Knuts, 1997

Stacks support last-in, first-out semantics for inserts and deletes, whereas queues are first-in,
first-out. Stacks and queues are usually building blocks in a solution to a complex problem. As we
will soon see, they can also make for stand-alone problems.

Stacks

A stack supports two basic operations—push and pop. Elements are added (pushed) and removed
(popped) in last-in, first-out order, as shown in Figure 8.1. If the stack is empty, pop typically
returns null or throws an exception.

When the stack is implemented using a linked list these operations have O(1) time complexity.
If it is implemented using an array, there is maximum number of entries it can have—push and pop
are still O(1). If the array is dynamically resized, the amortized time for both push and pop is O(1).
A stack can support additional operations such as peek, which returns the top of the stack without

popping it.

pop

(a) Initial configuration. (b) Popping (a). (c) Pushing 3 on to (b).

Figure 8.1: Operations on a stack.

Stacks boot camp

The last-in, first-out semantics of a stack make it very useful for creating reverse iterators for
sequences which are stored in a way that would make it difficult or impossible to step back from
a given element. This a program uses a stack to print the entries of a singly-linked list in reverse
order.

97

def print_linked_list_in_reverse(head):
nodes = []
while head:
nodes. append (head.data)
head = head.next
while nodes:
print (nodes.pop())

The time and space complexity are O(n), where n is the number of nodes in the list.

As an alternative, we could form the reverse of the list using Solution 7.2 on Page 85, iterate
through the list printing entries, then perform another reverse to recover the list—this would have
O(n) time complexity and O(1) space complexity.

Learn to recognize when the stack LIFO property is applicable. For example, parsing typically
benefits from a stack.

Consider augmenting the basic stack or queue data structure to support additional operations,
| such as finding the maximum element.

Table 8.1: Top Tips for Stacks

Know your stack libraries

Some of the problems require you to implement your own stack class; for others, use the built-in
list-type.
e s.append(e) pushes an element onto the stack. Not much can go wrong with a call to push.
e s[-1] will retrieve, but does not remove, the element at the top of the stack.
¢ s.pop() will remove and return the element at the top of the stack.
e len(s) == 0 tests if the stack is empty.
When called on an empty list s, both s[-1] and s.pop() raise an IndexError exception.

8.1 IMPLEMENT A STACK WITH MAX API

Design a stack that includes a max operation, in addition to push and pop. The max method should
return the maximum value stored in the stack.

Hint: Use additional storage to track the maximum value.

Solution: The simplest way to implement a max operation is to consider each element in the stack,
e.g., by iterating through the underlying array for an array-based stack. The time complexity is
O(n) and the space complexity is O(1), where n is the number of elements currently in the stack.

The time complexity can be reduced to O(log 1) using auxiliary data structures, specifically, a
heap or a BST, and a hash table. The space complexity increases to O(n) and the code is quite
complex.

Suppose we use a single auxiliary variable, M, to record the element that is maximum in the
stack. Updating M on pushes is easy: M = max(M,e), where e is the element being pushed.
However, updating M on pop is very time consuming. If M is the element being popped, we have

98

no way of knowing what the maximum remaining element is, and are forced to consider all the
remaining elements.

We can dramatically improve on the time complexity of popping by caching, in essence, trading
time for space. Specifically, for each entry in the stack, we cache the maximum stored at or below
that entry. Now when we pop, we evict the corresponding cached value.

class Stack:
ElementWithCachedMax = collections.namedtuple(’'ElementWithCachedMax’,

('element’', 'max’'))
def __init__(self):
self._element_with_cached_max = []
def empty(self):
return len(self._element_with_cached_max) == 0

def max(self):
if self.empty():
raise IndexError(’'max(): empty stack’)
return self._element_with_cached_max[-1].max

def pop(self):
if self.empty():
raise IndexError(’'pop(): empty stack’)
return self._element_with_cached_max.pop().element

def push(self, x):
self._element_with_cached_max.append(
self.ElementWithCachedMax(x, x if self.empty() else max(
x, self.max())))
Each of the specified methods has time complexity O(1). The additional space complexity is O(n),
regardless of the stored keys.

We can improve on the best-case space needed by observing that if an element e being pushed
is smaller than the maximum element already in the stack, then e can never be the maximum, so
we do not need to record it. We cannot store the sequence of maximum values in a separate stack
because of the possibility of duplicates. We resolve this by additionally recording the number of

occurrences of each maximum value. See Figure 8.2 on the following page for an example.

class Stack:
class MaxWithCount:
def __init__(self, max, count):
self.max, self.count = max, count

def __init__(self):
self._element = []
self._cached_max_with_count = []

def empty(self):
return len(self._element) ==

def max(self):
if self.empty():

def

def

raise IndexError(’'max(): empty stack’)
return self._cached_max_with_count[-1].max

pop(self):
if self.empty():
raise IndexError(’'pop(): empty stack’)
pop_element = self._element.pop()
current_max = self._cached_max_with_count[-1].max
if pop_element == current_max:
self._cached_max_with_count[-1].count -= 1
if self._cached_max_with_count[-1].count == 0:
self._cached_max_with_count.pop()
return pop_element

push(self, x):
self._element.append(x)
if len(self._cached_max_with_count) ==
self._cached_max_with_count.append(self.MaxWithCount(x, 1))
else:
current_max = self._cached_max_with_count[-1].max
if x == current_max:
self._cached_max_with_count[-1].count += 1
elif x > current_max:
self. _cached_max_with_count. append(self.MaxWithCount(x, 1))

The worst-case additional space complexity is O(), which occurs when each key pushed is greater
than all keys in the primary stack. However, when the number of distinct keys is small, or the

maximum changes infrequently, the additional space complexity is less, O(1) in the best-case. The
time complexity for each specified method is still O(1).

1
A

T
[
L

T
(%]
i

T
1
s

1=
s

N

>

5

5 5

' . 1
1 1 1] [sa] [1] [s2
2 2 2] |aa 2] [2] |aa
L 2] 2] 2| |22 2| |22 2| |22 2| |22 2| |22
aux aux aux aux aux aux aux

5

5 5 3

1 1 1 0 0

52 1] [52 1] (52 1 1 1 1
41 2| [a2 2| [an 2| [aa 2 2 2| |aa
2:2 ; 2,-2 ; 2,-2 ; 2,-2 ; 2,2 ; 2,2 ; 2,-2
aux aux aux aux aux aux aux

Figure 8.2: The primary and auxiliary stacks for the following operations: push 2, push 2, push 1, push 4, push 5,
push 5, push 3, pop, pop, pop, pop, push 0, push 3. Both stacks are initially empty, and their progression is shown from
left-to-right, then top-to-bottom. The top of the auxiliary stack holds the maximum element in the stack, and the number
of times that element occurs in the stack. The auxiliary stack is denoted by aux.

100

8.2 EvALUATE RPN EXPRESSIONS

A string is said to be an arithmetical expression in Reverse Polish notation (RPN} if:
(1.) Itis a single digit or a sequence of digits, prefixed with an option -, e.g., “6”, “123”, “—42".
(2.) Itis of the form “A, B, o” where A and B are RPN expressions and o is one of +, —, X, /.
For example, the following strings satisfy these rules: “1729”, “3,4,+,2,%,1,+”, “1,1,+,-2,X”,
“—641,6,/,28, ",

An RPN expression can be evaluated uniquely to an integer, which is determined recursively.
The base case corresponds to Rule (1.), which is an integer expressed in base-10 positional system.
Rule (2.)corresponds to the recursive case, and the RPNs are evaluated in the natural way, e.g., if A
evaluates to 2 and B evaluates to 3, then “A, B, X" evaluates to 6.

Write a program that takes an arithmetical expression in RPN and returns the number that the
expression evaluates to.

Hint: Process subexpressions, keeping values in a stack. How should operators be handled?

Solution: Let’s begin with the RPN example “3,4,+,2,%,1,+”. The ordinary form for this is
(3 +4) X 2+ 1. To evaluate this by hand, we would scan from left to right. We record 3, then 4, then
applying the + to 3 and 4, and record the result, 7. Note that we never need to examine the 3 and 4
again. Next we multiply by 2, and record the result, 14. Finally, we add 1 to obtain the final result,
15.

Observe that we need to record partial results, and as we encounter operators, we apply them
to the partial results. The partial results are added and removed in last-in, first-out order, which
makes a stack the natural data structure for evaluating RPN expressions.
def evaiuate(RPN_expression): | B

intermediate_results = []

DELIMITER = ',’
OPERATORS = {
'+': lambda y, x: x + y, '-': lambda y, x: x - y, '*':

lambda y, x: x * y, '/': lambda y, x: int(x / y)
}

for token in RPN_expression.split (DELIMITER):
if token in OPERATORS:
intermediate_results.append (OPERATORS [token](
intermediate_results.pop(), intermediate_results.pop()))
else: # token is a number.
intermediate_results.append(int(token))
return intermediate_results[-1]

Since we perform O(1) computation per character of the string, the time complexity is O(n), where
n is the length of the string.

Variant: Solve the same problem for expressions in Polish notation, i.e., when A, B, o is replaced by
o,A,Bin Rule (2.).

101

8.3 TesT A STRING OVER “{,},(,),[,]” FOR WELL-FORMEDNESS

A string over the characters “{,},(,),[,]” is said to be well-formed if the different types of brackets
match in the correct order.

For example, “([I{()}” is well-formed, as is “[O[{()0}]”. However, “{)”, “()”, and “[Q[{()()" are
not well-formed,

Write a program that tests if a string made up of the characters ’(’,’)’, ’[’, 'T",”{’ and”}’ is well-formed.
Hint: Which left parenthesis does a right parenthesis match with?

Solution: Let’s begin with well-formed strings consisting solely of left and right parentheses, e.g.,
“O(())”. If such a string is well-formed, each right parenthesis must match the closest left parenthesis
to its left. Therefore, starting from the left, every time we see a left parenthesis, we store it. Each
time we see a right parenthesis, we match it with a stored left parenthesis. Since there are not
brackets or braces, we can simply keep a count of the number of unmatched left parentheses.

For the general case, we do the same, except that we need to explicitly store the unmatched left
characters, i.e., left parenthesis, left brackets, and left braces. We cannot use three counters, because
that will not tell us the last unmatched one. A stack is a perfect option for this application: we use
it to record the unmatched left characters, with the most recent one at the top.

If we encounter a right character and the stack is empty or the top of the stack is a different
type of left character, the right character is not matched, implying the string is not matched. For
example, if the input string is “(()][)”, when we encounter the first], the character at the top of
the stack is ’(’, so the string is not matched. Conversely, if the input string is “(()[])”, when we
encounter the first ’]’, the character at the top of the stack is [/, so we continue on. If all characters
have been processed and the stack is nonempty, there are unmatched left characters so the string is
not matched.

def is_well_formed(s):
left_chars, lookup = [], {"C':)", "{’: "}, "[': ']}
for c in s:
if ¢ in lookup:
left_chars. append(c)
elif not left_chars or lookup[left_chars.pop()] != c:
Unmatched right char or mismatched chars.
return False
return not left_chars

The time complexity is O(n) since for each character we perform O(1) operations.

8.4 NORMALIZE PATHNAMES

A file or directory can be specified via a string called the pathname. This string may specify an
absolute path, starting from the root, e.g., /usr/bin/gcc, or a path relative to the current working
directory, e.g., scripts/awkscripts.

The same directory may be specified by multiple directory paths. For example,
/usr/lib/../bin/gcc and scripts//./../scripts/awkscripts/././ specify equivalent abso-
lute and relative pathnames.

102

Write a program which takes a pathname, and returns the shortest equivalent pathname. Assume
individual directories and files have names that use only alphanumeric characters. Subdirectory
names may be combined using forward slashes (/), the current directory (.), and parent directory

..)

Hint: Trace the cases. How should . and .. be handled? Watch for invalid paths.

Solution: It is natural to process the string from left-to-right, splitting on forward slashes (/s). We
record directory and file names. Each time we encounter a .., we delete the most recent name,
which corresponds to going up directory hierarchy. Since names are processed in a last-in, first-out
order, it is natural to store them in a stack. Individual periods (.s) are skipped.

If the string begins with /, then we cannot go up from it. We record this in the stack. If the stack
does not begin with /, we may encounter an empty stack when processing .., which indicates a
path that begins with an ancestor of the current working path. We need to record this in order to
give the shortest equivalent path. The final state of the stack directly corresponds to the shortest
equivalent directory path.

For example, if the string is sc//./../tc/awk/./ ./, the stack progression is as follows: (sc), (),
(tc) (tc, awk) Note that we sklp three .S and the / after sc/

def shortest equ1va1ent_path(path)
if not path:
raise ValueError ('Empty string is not a valid path.’)

path_names = [] # Uses list as a stack.
Special case: starts with '/’, which is an absolute path.
if path([0] == '/’:

path_names.append(’/’)

for token in (token for token in path.split(’'/’') if token mot in [’.’, '']):
if token == '..':
if not path_names or path_names([-1] == '..’:
path_names.append(token)
else:
if path_names[-1] == '/’:
raise ValueError('Path error’)
path_names.pop()
else: # Must be a name.
path_names. append(token)

result = '/’.join(path_names)
return result[result startswnh(//)] # Avoid startmg '//'.

The time complex1ty is O(n), where n is the length of the pathname

8.5 COMPUTE BUILDINGS WITH A SUNSET VIEW

You are given a series of buildings that have windows facing west. The buildings are in a straight
line, and any building which is to the east of a building of equal or greater height cannot view the
sunset.

103

Design an algorithm that processes buildings in east-to-west order and returns the set of buildings
which view the sunset. Each building is specified by its height.

Hint: When does a building not have a sunset view?

Solution: A brute-force approach is to store all buildings in an array. We then do a reverse scan of
this array, tracking the running maximum. Any building whose height is less than or equal to the
running maximum does not have a sunset view.

The time and space complexity are both O(n), where n is the number of buildings.

Note that if a building is to the east of a taller building, it cannot view the sunset. This suggests a
way to reduce the space complexity. We record buildings which potentially have a view. Each new
building may block views from the existing set. We determine which such buildings are blocked
by comparing the new building’s height to that of the buildings in the existing set. We can store the
existing set as a hash set—this requires us to iterate over all buildings each time a new building is
processed.

If a new building is shorter than a building in the current set, then all buildings in the current
set which are further to the east cannot be blocked by the new building. This suggests keeping the
buildings in a last-in, first-out manner, so that we can terminate earlier.

Specifically, we use a stack to record buildings that have a view. Each time a building b is
processed, if it is taller than the building at the top of the stack, we pop the stack until the top of the
stack is taller than b—all the buildings thus removed lie to the east of a taller building.

Although some individual steps may require many pops, each building is pushed and popped
at most once. Therefore, the run time to process n buildings is O(n), and the stack always holds
precisely the buildings which currently have a view.

The memory used is O(n), and the bound is tight, even when only one building has a view—
consider the input where the west-most building is the tallest, and the remaining n — 1 buildings
decrease in height from east to west. However, in the best-case, e.g., when buildings appear in
increasing height, we use O(1) space. In contrast, the brute-force approach always uses O(n) space.

def examine_buildings_with_sunset(sequence):
BuildingWithHeight = collections.namedtuple(’BuildingWithHeight',
(’id’, 'height’))

candidates = []
for building_idx, building_height in enumerate(sequence):

while candidates and building_height >= candidates[-1].height:

candidates.pop ()

candidates.append (BuildingWithHeight (building_idx, building_height))

return [candidate.id for candidate in reversed(candidates)]

Variant: Solve the problem subject to the same constraints when buildings are presented in west-
to-east order.

Queues

A queue supports two basic operations—enqueue and dequeue. (If the queue is empty, dequeue
typically returns null or throws an exception.) Elements are added (enqueued) and removed
(dequeued) in first-in, first-out order. The most recently inserted element is referred to as the tail

104

or back element, and the item that was inserted least recently is referred to as the head or front
element.

A queue can be implemented using a linked list, in which case these operations have O(1) time
complexity. The queue API often includes other operations, e.g., a method that returns the item at
the head of the queue without removing it, a method that returns the item at the tail of the queue
without removing it, etc. A queue can also be implemented using an array; see Problem 8.7 on
Page 107 for details.

L dequeuex_ T | e ——)
31210 210 2:01 4. ‘enqueue 4

—— e 1 1 1 1 1

(a) Initial configuration. (b) Queue (a) after dequeue. (c) Queue (b) after enqueuing 4.

Figure 8.3: Examples of enqueuing and dequeuing.

A deque, also sometimes called a double-ended queue, is a doubly linked list in which all
insertions and deletions are from one of the two ends of the list, i.e., at the head or the tail. An
insertion to the front is commonly called a push, and an insertion to the back is commonly called
an inject. A deletion from the front is commonly called a pop, and a deletion from the back is
commonly called an eject. (Different languages and libraries may have different nomenclature.)

Queues boot camp

In the following program, we implement the basic queue API—enqueue and dequeue—as well
as a max-method, which returns the maximum element stored in the queue. The basic idea is to
use composition: add a private field that references a library queue object, and forward existing
methods (enqueue and dequeue in this case) to that object.

class Queue:
def __init__(self):
self._data = collections.deque()

def enqueue(self, x):
self._data.append(x)

def dequeue(self):
return self._data.popleft()

def max(self):
return max(self._data)
The time complexity of enqueue and dequeue are the same as that of the library queue, namely,
O(1). The time complexity of finding the maximum is O(n), where n is the number of entries. In
Solution 8.9 on Page 109 we show how to improve the time complexity of maximum to O(1) with a

more customized approach.

Learn to recognize when the queue FIFO property is applicable. For example, queues are ideal
‘when order needs to be preserved.

Table 8.2: Top Tips for Queues

105

Know your queue libraries

Some of the problems require you to implement your own queue class; for others, use the
collections.deque class.
¢ q.append(e) pushes an element onto the queue. Not much can go wrong with a call to push.
e q[0] will retrieve, but not remove, the element at the front of the queue. Similarly, q[-1] will
retrieve, but not remove, the element at the back of the queue.
e g.popleft () will remove and return the element at the front of the queue.
Dequeing or accessing the head/tail of an empty collection results in an IndexError exception being
raised.

8.6 COMPUTE BINARY TREE NODES IN ORDER OF INCREASING DEPTH

Binary trees are formally defined in Chapter 9. In particular, each node in a binary tree has a depth,
which is its distance from the root.

Given a binary tree, return an array consisting of the keys at the same level. Keys should appear
in the order of the corresponding nodes’ depths, breaking ties from left to right. For example, you
should return ((314), (6, 6), (271,561, 2,271), (28,0, 3, 1, 28), (17,401, 257), (641)) for the binary tree
in Figure 9.1 on Page 112.

Hint: First think about solving this problem with a pair of queues.

Solution: A brute force approach might be to write the nodes into an array while simultaneously
computing their depth. We can use preorder traversal to compute this array—by traversing a node’s
left child first we can ensure that nodes at the same depth are sorted from left to right. Now we
can sort this array using a stable sorting algorithm with node depth being the sort key. The time
complexity is dominated by the time taken to sort, i.e., O(n log n), and the space complexity is O(n),
which is the space to store the node depths.

Intuitively, since nodes are already presented in a somewhat ordered fashion in the tree, it
should be possible to avoid a full-blow sort, thereby reducing time complexity. Furthermore, by
processing nodes in order of depth, we do not need to label every node with its depth.

In the following, we use a queue of nodes to store nodes at depth i and a queue of nodes at
depth i + 1. After all nodes at depth i are processed, we are done with that queue, and can start
processing the queue with nodes at depth i + 1, putting the depth i + 2 nodes in a new queue.
def binary_tree_depth_order(tree):

result = []

if not tree:
return result

curr_depth_nodes = [tree]
while curr_depth_nodes:
result.append([curr.data for curr in curr_depth_nodes])
curr_depth_nodes = [
child
for curr in curr_depth_nodes for child in (curr.left, curr.right)
if child
]
return result

106

Since each node is enqueued and dequeued exactly once, the time complexity is O(n). The space
complexity is O(m), where m is the maximum number of nodes at any single depth.

Variant: Write a program which takes as input a binary tree and returns the keys in top
down, alternating left-to-right and right-to-left order, starting from left-to-right. For ex-
ample, if the input is the tree in Figure 9.1 on Page 112, your program should return
((314), (6, 6), (271,561, 2,271),(28,1, 3,0, 28),(17,401, 257), (641)).

Variant: Write a program which takes as input a binary tree and returns the keys in a bottom up,
left-to-right order. For example, if the input is the tree in Figure 9.1 on Page 112, your program
should return ((641), (17,401,257),(28,0, 3, 1, 28),(271, 561, 2, 271), (6, 6), (314)).

Variant: Write a program which takes as input a binary tree with integer keys, and returns the
average of the keys at each level. For example, if the input is the tree in Figure 9.1 on Page 112, your
program should return (314, 6, 276.25, 12, 225, 641).

8.7 IMPLEMENT A CIRCULAR QUEUE

A queue can be implemented using an array and two additional fields, the beginning and the end
indices. This structure is sometimes referred to as a circular queue. Both enqueue and dequeue
have O(1) time complexity. If the array is fixed, there is a maximum number of entries that can be
stored. If the array is dynamically resized, the total time for m combined enqueue and dequeue
operations is O(m).

Implement a queue APl using an array for storing elements. Your API should include a constructor
function, which takes as argument the initial capacity of the queue, enqueue and dequeue functions,
and a function which returns the number of elements stored. Implement dynamic resizing to
support storing an arbitrarily large number of elements.

Hint: Track the head and tail. How can you differentiate a full queue from an empty one?

Solution: A brute-force approach is to use an array, with the head always at index 0. An additional
variable tracks the index of the tail element. Enqueue has O(1) time complexity. However dequeue’s
time complexity is O(n), where n is the number of elements in the queue, since every element has
to be left-shifted to fill up the space created at index 0.

A better approach is to keep one more variable to track the head. This way, dequeue can also
be performed in O(1) time. When performing an enqueue into a full array, we need to resize the
array. We cannot only resize, because this results in queue elements not appearing contiguously.
For example, if the array is (e, b,c,d), with e being the tail and b the head, if we resize to get
{e,b,c,d,.,., .,), we cannot enqueue without overwriting or moving elements.

class Queue:
SCALE_FACTOR = 2

def __init__(self, capacity):
self._entries = [None] * capacity

self._head = self._tail = self._num_queue_elements = 0

def enqueue(self, x):

107

if self._num_queue_elements == len(self._entries): # Needs to resize.
Makes the queue elements appear consecutively.
self._entries = (
self._entries[self._head:] + self._entries([:self._head])
Resets head and tail.
self._head, self._tail = 0, self._num_queue_elements
self._entries += [None] * (
len(self._entries) * Queue.SCALE_FACTOR - len(self._entries))

self. _entries[self._tail] = x
self._tail = (self._tail + 1) % len(self._entries)
self._num_queue_elements += 1

def dequeue(self):
if not self._num_queue_elements:
raise IndexError(’'empty queue’)
self._num_queue_elements -= 1
ret = self._entries[self._head]
self. _head = (self._head + 1) % len(self._entries)
return ret

def size(self):
return self._num_queue_elements

The time complexity of dequeue is O(1), and the amortized time complexity of enqueue is O(1).

8.8 IMPLEMENT A QUEUE USING STACKS

Queue insertion and deletion follows first-in, first-out semantics; stack insertion and deletion is
last-in, first-out.

How would you implement a queue given a library implementing stacks?
Hint: It is impossible to solve this problem with a single stack.

Solution: A straightforward implementation is to enqueue by pushing the element to be enqueued
onto one stack. The element to be dequeued is then the element at the bottom of this stack, which
can be achieved by first popping all its elements and pushing them to another stack, then popping
the top of the second stack (which was the bottom-most element of the first stack), and finally
popping the remaining elements back to the first stack.

The primary problem with this approach is that every dequeue takes two pushes and two pops
of every element, i.e., dequeue has O(n) time complexity, where 7 is the number of stored elements.
(Enqueue takes O(1) time.)

The intuition for improving the time complexity of dequeue is that after we move elements
from the first stack to the second stack, any further dequeues are trivial, until the second stack is
empty. This is true even if we need to enqueue, as long as we enqueue onto the first stack. When
the second stack becomes empty, and we need to perform a dequeue, we simply repeat the process
of transferring from the first stack to the second stack. In essence, we are using the first stack for
enqueue and the second for dequeue.

class Queue:

108

def __init__(self):
self._enq, self._deq = [], []

def enqueue(self, x):
self._enq.append(x)

def dequeue(self):
if not self._deq:
Transfers the elements in _enq to _deq.
while self._enqg:
self._deq.append(self._enq.pop())

if not self._deq: # _deq is still empty!
raise IndexError(’'empty queue’)
return self._deq.pop()

This approach takes O(m) time for m operations, which can be seen from the fact that each element
is pushed no more than twice and popped no more than twice.

8.9 IMPLEMENT A QUEUE WITH MAX API

Implement a queue with enqueue, dequeue, and max operations. The max operation returns the
maximum element currently stored in the queue.

Hint: When can an element never be returned by max, regardless of future updates?

Solution: A brute-force approach is to track the current maximum. The current maximum has to
be updated on both enqueue and dequeue. Updating the current maximum on enqueue is trivial
and fast—just compare the enqueued value with the current maximum. However, updating the
current maximum on dequeue is slow—we must examine every single remaining element, which
takes O(n) time, where 7 is the size of the queue.

Consider an element s in the queue that has the property that it entered the queue before a later
element, b, which is greater than s. Since s will be dequeued before b, s can never in the future
become the maximum element stored in the queue, regardless of the subsequent enqueues and
dequeues.

The key to a faster implementation of a queue-with-max is to eliminate elements like s from
consideration. We do this by maintaining the set of entries in the queue that have no later entry in
the queue greater than them in a separate deque. Elements in the deque will be ordered by their
position in the queue, with the candidate closest to the head of the queue appearing first. Since
each entry in the deque is greater than or equal to its successors, the largest element in the queue is
at the head of the deque.

We now briefly describe how to update the deque on queue updates. If the queue is dequeued,
and if the element just dequeued is at the deque’s head, we pop the deque from its head; otherwise
the deque remains unchanged. When we add an entry to the queue, we iteratively evict from the
deque’s tail until the element at the tail is greater than or equal to the entry being enqueued, and
then add the new entry to the deque’s tail. These operations are illustrated in Figure 8.4 on the
following page.

109

Q|3'1'3'2'0 Q|3'1'3'2'0'1 Q|1'3'2'0'1 Q|3'2'0'1
D|3'3'2'0 D|3'3'2'1 D|3'2'1 D|3'2'1

e[3B2ol12 e[3l2l0l1.2.3a e[2loi1214 o3 20/1'2'a'a
p[3 272 p [4 o [4 p[a'a

Figure 8.4: The queue with max for the following operations: enqueue 1, dequeue, dequeue, enqueue 2, enqueue 4,
dequeue, enqueue 4. The queue initially contains 3,1, 3,2, and 0 in that order. The deque D corresponding to queue Q
is immediately below Q. The progression is shown from left-to-right, then top-to-bottom. The head of each queue and
deque is on the left. Observe how the head of the deque holds the maximum element in the queue.

class QueueWithMax:
def __init__(self):
self._entries = collections.deque()
self._candidates_for_max = collections.deque()

def enqueue(self, x):
self._entries.append(x)
Eliminate dominated elements in _candidates_for_max.
while self._candidates_for_max and self._candidates_for_max[-1] < x:
self._candidates_for_max.pop()
self._candidates_for_max.append(x)

def dequeue(self):
if self._entries:
result = self._entries.popleft()
if result == self._candidates_for_max[0]:
self._candidates_for_max.popleft ()
return result
raise IndexError(’empty queue’)

def max(self):
if self._candidates_for_max:
return self._candidates_for_max[0]

raise IndexError(’empty queue’)
Each dequeue operation has time O(1) complexity. A single enqueue operation may entail many
ejections from the deque. However, the amortized time complexity of n enqueues and dequeues
is O(n), since an element can be added and removed from the deque no more than once. The max
operation is O(1) since it consists of returning the element at the head of the deque.

An alternate solution that is often presented is to use reduction. Specifically, we know how to
solve the stack-with-max problem efficiently (Solution 8.1 on Page 98) and we also know how to
efficiently model a queue with two stacks (Solution 8.8 on Page 108), so we can solve the queue-
with-max design by modeling a queue with two stacks-with-max. This approach feels unnatural
compared to the one presented above.

class QueueWithMax:
def __init__(self):

110

self._enqueue = Stack()
self._dequeue = Stack()

def enqueue(self, x):
self._enqueue.push(x)

def dequeue(self):
if self._dequeue.empty():
while not self._enqueue.empty():
self._dequeue.push(self._enqueue.pop())
if not self._dequeue.empty():
return self._dequeue.pop()
raise IndexError(’empty queue’)

def max(self):
if not self._enqueue.empty():
return self._enqueue.max() if self._dequeue.empty() else max(
self._enqueue.max(), self._dequeue.max())
if not self._dequeue.empty():
return self._dequeue.max()
raise IndexError(’'empty queue’)

Since the stack-with-max has O(1) amortized time complexity for push, pop, and max, and the queue
from two stacks has O(1) amortized time complexity for enqueue and dequeue, this approach has
O(1) amortized time complexity for enqueue, dequeue, and max.

111

CHAPTER
g
- Binary Trees

The method of solution involves the development of a theory of finite automata
operating on infinite trees.

: 3 — “Decidability of Second Order Theories and Automata on Trees,”
M. O. RaBiN, 1969

Formally, a binary tree is either empty, or a root node r together with a left binary tree and a right
binary tree. The subtrees themselves are binary trees. The left binary tree is sometimes referred to
as the left subtree of the root, and the right binary tree is referred to as the right subtree of the root.

Binary trees most commonly occur in the context of binary search trees, wherein keys are stored
in a sorted fashion (Chapter 14 on Page 197). However, there are many other applications of binary
trees: at a high level, binary tree are appropriate when dealing with hierarchies.

Figure 9.1 gives a graphical representation of a binary tree. Node A is the root. Nodes B and I
are the left and right children of A.

T

depth 0
depth 1
depth 2
depth 3

depth 4

depth 5

Figure 9.1: Example of a binary tree. The node depths range from 0 to 5. Node M has the highest depth (5) of any
node in the tree, implying the height of the tree is 5.

Often the node stores additional data. Its prototype is listed as follows:
class BinaryTreeNode:
def __init__(self, data=None, left=None, right=None):
self.data = data
self.left = left
self.right = right

Each node, except the root, is itself the root of a left subtree or a right subtree. If l is the root of
p’s left subtree, we will say I is the left child of p, and p is the parent of I; the notion of right child is

112

similar. If a node is a left or a right child of p, we say it is a child of p. Note that with the exception
of the root, every node has a unique parent. Usually, but not universally, the node object definition
includes a parent field (which is null for the root). Observe that for any node there exists a unique
sequence of nodes from the root to that node with each node in the sequence being a child of the
previous node. This sequence is sometimes referred to as the search path from the root to the node.

The parent-child relationship defines an ancestor-descendant relationship on nodes in a binary
tree. Specifically, a node is an ancestor of d if it lies on the search path from the root to d. If a node is
an ancestor of d, we say d is a descendant of that node. Our convention is that a node is an ancestor
and descendant of itself. A node that has no descendants except for itself is called a leaf.

The depth of a node n is the number of nodes on the search path from the root to n, not including
n itself. The height of a binary tree is the maximum depth of any node in that tree. A level of a tree is
all nodes at the same depth. See Figure 9.1 on the preceding page for an example of the depth and
height concepts.

As concrete examples of these concepts, consider the binary tree in Figure 9.1 on the facing page.
Node I is the parent of] and O. Node G is a descendant of B. The search path to L is (4,1,],K,L).
The depth of N is 4. Node M is the node of maximum depth, and hence the height of the tree is
5. The height of the subtree rooted at B is 3. The height of the subtree rooted at H is 0. Nodes
D,E,H,M,N, and P are the leaves of the tree.

A full binary tree is a binary tree in which every node other than the leaves has two children.
A perfect binary tree is a full binary tree in which all leaves are at the same depth, and in which
every parent has two children. A complete binary tree is a binary tree in which every level, except
possibly the last, is completely filled, and all nodes are as far left as possible. (This terminology is
not universal, e.g., some authors use complete binary tree where we write perfect binary tree.) It is
straightforward to prove using induction that the number of nonleaf nodes in a full binary tree is
one less than the number of leaves. A perfect binary tree of height h contains exactly 2#*1 — 1 nodes,
of which 2" are leaves. A complete binary tree on 7 nodes has height |logn]. A left-skewed tree is
a tree in which no node has a right child; a right-skewed tree is a tree in which no node has a left
child. In either case, we refer to the binary tree as being skewed.

A key computation on a binary tree is traversing all the nodes in the tree. (Traversing is also
sometimes called walking.) Here are some ways in which this visit can be done.

o Traverse the left subtree, visit the root, then traverse the right subtree (an inorder traversal).

An inorder traversal of the binary tree in Figure 9.1 on the preceding page visits the nodes in
the following order: (D,C,E,B,F,H,G,A,],L,M,K,N,I, O, P).

e Visit the root, traverse the left subtree, then traverse the right subtree (a preorder traversal). A
preorder traversal of the binary tree in Figure 9.1 on the facing page visits the nodes in the
following order: (A, B,C,D,E,F,G,H,I,],K,L,M,N,O, P).

o Traverse the left subtree, traverse the right subtree, and then visit the root (a postorder traversal).
A postorder traversal of the binary tree in Figure 9.1 on the preceding page visits the nodes
in the following order: (D, E,C,H,G,F,B,M,L,N,K,],P,O,1, A).

Let T be a binary tree of n nodes, with height h. Implemented recursively, these traversals have
O(n) time complexity and O(h) additional space complexity. (The space complexity is dictated by
the maximum depth of the function call stack.) If each node has a parent field, the traversals can be
done with O(1) additional space complexity.

The term tree is overloaded, which can lead to confusion; see Page 275 for an overview of the
common variants.

113

Binary trees boot camp

A good way to get up to speed with binary trees is to implement the three basic traversals—inorder,
preorder, and postorder.
def tree_traversal(root):
if root:

Preorder: Processes the root before the traversals of left and right

children.

print(’Preorder: %¥d’ % root.data)

tree_traversal (root.left)

Inorder: Processes the root after the traversal of left child and

before the traversal of right child.

print (' Inorder: %d’ % root.data)

tree_traversal(root.right)

Postorder: Processes the root after the traversals of left and right

children.

print ('Postorder: %d’ % root.data)

The time complexity of each approach is O(n), where 1 is the number of nodes in the tree. Although
no memory is explicitly allocated, the function call stack reaches a maximum depth of h, the height

of the tree. Therefore, the space complexity is O(h). The minimum value for h is logn (complete
binary tree) and the maximum value for h is n (skewed tree).

Recursive algorithms are well-suited to problems on trees. Remember to include space implic-
itly allocated on the function call stack when doing space complexity analysis. Please read the
introduction to Chapter 15 if you need a refresher on recursion.

Some tree problems have simple brute-force solutions that use O(n) space, but subtler solutions
that use the existing tree nodes to reduce space complexity to O(1).

Consider left- and right-skewed trees when doing complexity analysis. Note that O(h) com-
plexity, where h is the tree height, translates into O(logn) complexity for balanced trees, but
O(n) complexity for skewed trees.

If each node has a parent field, use it to make your code simpler, and to reduce time and space
complexity.

It's easy to make the mistake of treating a node that has a single child as aleaf.
Table 9.1: Top Tips for Binary Trees

9.1 TEST IF A BINARY TREE IS HEIGHT-BALANCED

Abinary tree is said to be height-balanced if for each node in the tree, the difference in the height of
its left and right subtrees is at most one. A perfect binary tree is height-balanced, as is a complete
binary tree. A height-balanced binary tree does not have to be perfect or complete—see Figure 9.2
on the next page for an example.

Write a program that takes as input the root of a binary tree and checks whether the tree is height-
balanced.

Hint: Think of a classic binary tree algorithm.

114

Q

Figure 9.2: A height-balanced binary tree of height 4.

Solution: Here is a brute-force algorithm. Compute the height for the tree rooted at each node x
recursively. The basic computation is to compute the height for each node starting from the leaves,
and proceeding upwards. For each node, we check if the difference in heights of the left and right
children is greater than one. We can store the heights in a hash table, or in a new field in the nodes.
This entails O(n) storage and O(n) time, where n is the number of nodes of the tree.

We can solve this problem using less storage by observing that we do not need to store the
heights of all nodes at the same time. Once we are done with a subtree, all we need to know is
whether it is height-balanced, and if so, what its height is—we do not need any information about
descendants of the subtree’s root.
def is_balanced_binary_tree(trée):

BalancedStatusWithHeight = collections.namedtuple(
'BalancedStatusWithHeight’', (’balanced’, ’'height’))

First value of the return value indicates if tree is balanced, and if
balanced the second value of the return value is the height of tree.
def check_balanced(tree):
if not tree:
return BalancedStatusWithHeight(True, -1) # Base case.

left_result = check_balanced(tree.left)
if not left_result.balanced:
Left subtree is not balanced.
return BalancedStatusWithHeight(False, 0)

right_result = check_balanced(tree.right)
if not right_result.balanced:
Right subtree is not balanced.
return BalancedStatusWithHeight(False, 0)

is_balanced = abs(left_result.height - right_result.height) <= 1
height = max(left_result.height, right_result.height) + 1
return BalancedStatusWithHeight(is_balanced, height)

return check_balanced(tree).balanced

The program implements a postorder traversal with some calls possibly being eliminated because
of early termination. Specifically, if any left subtree is not height-balanced we do not need to visit

115

the corresponding right subtree. The function call stack corresponds to a sequence of calls from the
root through the unique path to the current node, and the stack height is therefore bounded by the

height of the tree, leading to an O(h) space bound. The time complexity is the same as that for a
postorder traversal, namely O(n).

Variant: Write a program that returns the size of the largest subtree that is complete.

Variant: Define a node in a binary tree to be k-balanced if the difference in the number of nodes in
its left and right subtrees is no more than k. Design an algorithm that takes as input a binary tree
and positive integer k, and returns a node in the binary tree such that the node is not k-balanced,
but all of its descendants are k-balanced. For example, when applied to the binary tree in Figure 9.1
on Page 112, if k = 3, your algorithm should return Node].

9.2 TEST IF A BINARY TREE IS SYMMETRIC

A binary tree is symmetric if you can draw a vertical line through the root and then the left subtree
is the mirror image of the right subtree. The concept of a symmetric binary tree is illustrated in
Figure 9.3.

» (3]

(a) A symmetric binary tree. (b) An asymmetric binary tree. (c) An asymmetric binary tree.

Figure 9.3: Symmetric and asymmetric binary trees. The tree in (a) is symmetric. The tree in (b) is structurally
symmetric, but not symmetric, because symmetry requires that corresponding nodes have the same keys; here C and
F as well as D and G break symmetry. The tree in (c) is asymmetric because there is no node corresponding to D.

Write a program that checks whether a binary tree is symmetric.
Hint: The definition of symmetry is recursive.

Solution: We can test if a tree is symmetric by computing its mirror image and seeing if the mirror
image is equal to the original tree. Computing the mirror image of a tree is as simple as swapping
the left and right subtrees, and recursively continuing. The time and space complexity are both
O(n), where 7 is the number of nodes in the tree.

The insight to a better algorithm is that we do not need to construct the mirrored subtrees. All
that is important is whether a pair of subtrees are mirror images. As soon as a pair fails the test, we
can short circuit the check to false. This is shown in the code below.
def is_symmetric(tree):

def check_symmetric(subtree_0, subtree_1):
if not subtree_§ and not subtree_1:
return True

elif subtree_0® and subtree_1:
return (subtree_0.data == subtree_1.data

116

and check_symmetric(subtree_0.left, subtree_1.right)
and check_symmetric(subtree_0.right, subtree_1l.left))
One subtree is empty, and the other is not.
return False

return not tree or check symmetr1c(tree left tree. r1ght)

The time complex1ty and space complexity are O(n) and O(h) respectlvely, where n is the number
of nodes in the tree and h is the height of the tree.

9.3 COMPUTE THE LOWEST COMMON ANCESTOR IN A BINARY TREE

Any two nodes in a binary tree have a common ancestor, namely the root. The lowest common
ancestor (LCA) of any two nodes in a binary tree is the node furthest from the root that is an ancestor
of both nodes. For example, the LCA of M and N in Figure 9.1 on Page 112 is K.

Computing the LCA has important applications. For example, it is an essential calculation
when rendering web pages, specifically when computing the Cascading Style Sheet (CSS) that is
applicable to a particular Document Object Model (DOM) element.

Design an algorithm for computing the LCA of two nodes in a binary tree in which nodes do not
have a parent field.

Hint: When is the root the LCA?

Solution: A brute-force approach is to see if the nodes are in different immediate subtrees of the
root, or if one of the nodes is the root. In this case, the root must be the LCA. If both nodes are in
the left subtree of the root, or the right subtree of the root, we recurse on that subtree. The time
complexity is O(n?), where n is the number of nodes. The worst-case is a skewed tree with the two
nodes at the bottom of the tree.

The insight to a better time complexity is that we do not need to perform multiple passes. If the
two nodes are in a subtree, we can compute the LCA directly, instead of simply returning a Boolean
indicating that both nodes are in that subtree. The program below returns an object with two
fields—the first is an integer indicating how many of the two nodes were present in that subtree,
and the second is their LCA, if both nodes were present

def lca(tree, nodeo, nodel)
Status = collections.namedtuple(’'Status’, ('num_target_nodes’, 'ancestor’))

Returns an object consisting of an int and a node. The int field is 0,
1, or 2 depending on how many of {node®, nodel} are present in tree. If
both are present in tree, when ancestor is assigned to a non-null value,
it is the LCA.
def 1lca_helper(tree, node®, nodel):
if not tree:
return Status(®, None)

left_result = lca_helper(tree.left, node®, nodel)
if left_result.num_target_nodes ==

Found both nodes in the left subtree.

return left_result
right_result = lca_helper(tree.right, node®, nodel)
if right_result.num_target_nodes ==

117

Found both nodes in the right subtree.
return right_result
num_target_nodes = (
left_result.num_target_nodes + right_result.num_target_nodes + int(
tree is node®) + int(tree is nodel))
return Status(num_target_nodes, tree if num_target_nodes == 2 else None)

return lca_helper(tree, node®, nodel).ancestor
The algorithm is structurally similar to a recursive postorder traversal, and the complexities are the
same. Specifically, the time complexity and space complexity are O(n) and O(h), respectively, where
h is the height of the tree.

9.4 CompPuUTE THE LCA WHEN NODES HAVE PARENT POINTERS

Given two nodes in a binary tree, design an algorithm that computes their LCA. Assume that each
node has a parent pointer.

Hint: The problem is easy if both nodes are the same distance from the root.

Solution: A brute-force approach is to store the nodes on the search path from the root to one of the
nodes in a hash table. This is easily done since we can use the parent field. Then we go up from the
second node, stopping as soon as we hit a node in the hash table. The time and space complexity
are both O(h), where h is the height of the tree.

We know the two nodes have a common ancestor, namely the root. If the nodes are at the same
depth, we can move up the tree in tandem from both nodes, stopping at the first common node,
which is the LCA. However, if they are not the same depth, we need to keep the set of traversed
nodes to know when we find the first common node. We can circumvent having to store these
nodes by ascending from the deeper node to get the same depth as the shallower node, and then
performing the tandem upward movement.

For example, for the tree in Figure 9.1 on Page 112, nodes M and P are depths 5 and 3, respectively.
Their search paths are (4,1,], K, L,M) and (A, I, O, P). If we ascend to depth 3 from M, we get to K.
Now when we move upwards in tandem, the first common node is I, which is the LCA of M and P.

Computing the depth is straightforward since we have the parent field—the time complexity is
O(h) and the space complexity is O(1). Once we have the depths we can perform the tandem move
to get the LCA.

def lca(node_0, node_1):
def get_depth(node):
depth = 0
while node:
depth += 1
node = node.parent
return depth

depth_0, depth_1 = get_depth(node_0®), get_depth(node_1)
Makes node_0® as the deeper node in order to simplify the code.
if depth_1 > depth_0:

node_0®, node_1 = node_1, node_0

Ascends from the deeper node.

118

depth_diff = abs(depth_0 - depth_1)
while depth_diff:
node_0® = node_0.parent
depth_diff -=

Now ascends both nodes until we reach the LCA.
while node_0® is not node_1:

node_0, node_1 = node_0.parent, node_l.parent
return node_0

The time and space complexity are that of computing the depth, namely O(h) and O(1), respectively.

9.5 SuUM THE ROOT-TO-LEAF PATHS IN A BINARY TREE

Consider a binary tree in which each node contains a binary digit. A root-to-leaf path can be
associated with a binary number—the MSB is at the root. As an example, the binary tree in
Figure 9.4 represents the numbers (1000),, (1001),, (10110),, (110011);, (11000),, and (1100),.

Figure 9.4: Binary tree encoding integers.

Design an algorithm to compute the sum of the binary numbers represented by the root-to-leaf
paths.

Hint: Think of an appropriate way of traversing the tree.

Solution: Here is a brute-force algorithm. We compute the leaves, and store the child-parent
mapping in a hash table, e.g., via an inorder walk. Afterwards, we traverse from each of the leaves
to the root using the child-parent map. Each leaf-to-root path yields a binary integer, with the leaf’s
bit being the LSB. We sum these integers to obtain the result. The time complexity is O(Lh), where
L is the number of root-to-leaf paths (which equals the number of leaves), and / is the tree height.
The space complexity is dominated by the hash table, namely O(n), where n is the number of nodes.

The insight to improving complexity is to recognize that paths share nodes and that it is not
necessary to repeat computations across the shared nodes. To compute the integer for the path from
the root to any node, we take the integer for the node’s parent, double it, and add the bit at that
node. For example, the integer for the path from A to L is 2 X (1100); + 1 = (11001),.

119

Therefore, we can compute the sum of all root to leaf node as follows. Each time we visit a node,
we compute the integer it encodes using the number for its parent. If the node is a leaf we return
its mteger If it is not a leaf, we return the sum of the results from 1ts left and nght chlldren

def sum_root_to_ leaf(tree, partlal_path sum= 0)
if not tree:
return 6

partial_path_sum = partial_path_sum * 2 + tree.data

if not tree.left and not tree.right: # Leaf.
return partial_path_sum

Non-leaf.

return (sum_root_to_leaf(tree.left, partial_path_sum) + sum_root_to_leaf(

tree. r1ght. part1al_path sum))

The time complex1ty and space complex1ty are O(n) and O(h), respectlvely

9.6 FIND A ROOT TO LEAF PATH WITH SPECIFIED SUM

You are given a binary tree where each node is labeled with an integer. The path weight of a node in
such a tree is the sum of the integers on the unique path from the root to that node. For the example
shown in Figure 9.1 on Page 112, the path weight of E is 591.

Write a program which takes as input an integer and a binary tree with integer node weights, and
checks if there exists a leaf whose path weight equals the given integer.

Hint: What do you need to know about the rest of the tree when checking a specific subtree?

Solution: The brute-force algorithm in Solution 9.5 on the preceding page can be directly applied
to this problem, and it has the same time complexity, namely, O(Lh), where L is the number of root-
to-leaf paths (which equals the number of leaves), and h is the tree height. The space complexity is
dominated by the hash table, namely O(n), where n is the number of nodes.

The inefficiency in the brute-force algorithm stems from the fact that we have overlapping paths,
and we do not share the summation computation across those overlaps.

A better approach is to traverse the tree, keeping track of difference of the root-to-node path
sum and the target value—call this the remaining weight. As soon as we encounter a leaf and the
remaining weight is equal to the leaf’s weight, we return true. Short circuit evaluation of the check
ensures that we do not process addltlonal leaves

def has _path_ sum(tree, remaining_ welght)
if not tree:
return False
if not tree.left and not tree.right: # Leaf.
return remaining_weight == tree.data
Non-leaf.
return (has_path_sum(tree.left, remaining_weight - tree.data)
or has_path sum(tree rlght, rema1n1ng welght - tree.data))

The time complex1ty and space complexity are O(n) and O(h), respectlvely

Variant: Write a program which takes the same inputs as in Problem 9.6 and returns all the paths to
leaves whose weight equals s. For example, if s = 619, you should return ({4, B,C, D), {4, 1, O, P)).

120

9.7 IMPLEMENT AN INORDER TRAVERSAL WITHOUT RECURSION

This problem is concerned with traversing nodes in a binary tree in an inorder fashion. See Page 113
for details and examples of these traversals. Generally speaking, a traversal computation is easy to
implement if recursion is allowed.

Write a program which takes as input a binary tree and performs an inorder traversal of the tree.
Do not use recursion. Nodes do not contain parent references.

Hint: Simulate the function call stack.

Solution: The recursive solution is trivial—first traverse the left subtree, then visit the root, and
finally traverse the right subtree. This algorithm can be converted into a iterative algorithm by
using an explicit stack. Several implementations are possible; the one below is noteworthy in that
it pushes the current node, and not its right child. Furthermore, it does not use a visited field.

def inorder_traversal(tree):

s, result = [1, []

while s or tree:
if tree:
s.append (tree)
Going left.
tree = tree.left
else:
Going up.
tree = s.pop(Q)
result.append(tree.data)
Going right.
tree = tree.right
return result
For the binary tree in Figure 9.1 on Page 112, the first few stack states are (A), (4,B), (A,B,C),
(A,B,C,D),(A,B,C), (A, B,D), (A, B), (A), (A, F).
The time complexity is O(n), since the total time spent on each node is O(1). The space complexity
is O(h), where h is the height of the tree. This space is allocated dynamically, specifically it is the
maximum depth of the function call stack for the recursive implementation. See Page 113 for a

definition of tree height.

9.8 IMPLEMENT A PREORDER TRAVERSAL WITHOUT RECURSION

This problem is concerned with traversing nodes in a binary tree in preorder fashion. See Page 113
for details and examples of these traversals. Generally speaking, a traversal computation is easy to
implement if recursion is allowed.

Write a program which takes as input a binary tree and performs a preorder traversal of the tree.
Do not use recursion. Nodes do not contain parent references.
Solution:

We can get intuition as to the best way to perform a preorder traversal without recursion by
noting that a preorder traversal visits nodes in a last in, first out order. We can perform the preorder
traversal using a stack of tree nodes. The stack is initialized to contain the root. We visit a node by

121

popping it, adding first its right child, and then its left child to the stack. (We add the left child after
the right child, since we want to continue with the left child.)

For the binary tree in Figure 9.1 on Page 112, the first few stack states are (A), (I, B), (I, F,C),
(LEE,D), (I,FE), {I,F), {I,G), {I,H), and (I). (The top of the stack is the rightmost node in the
sequences.)
def preorder_traversal(tree): . - - -

path, result = [tree], []
while path:
curr = path.pop(Q)
if curr:
result. append(curr.data)
path += [curr.right, curr.left]
return result
Since we push and pop each node exactly once, the time complexity is O(n), where n is the number
of nodes. The space complexity is O(h), where h is the height of the tree, since, with the possible
exception of the top of the stack, the nodes in the stack correspond to the right children of the nodes

on a path beginning at the root.

9.9 COMPUTE THE KTH NODE IN AN INORDER TRAVERSAL

Itis trivial to find the kth node that appears in an inorder traversal with O(n) time complexity, where
n is the number of nodes. However, with additional information on each node, you can do better.

Write a program that efficiently computes the kth node appearing in an inorder traversal. Assume
that each node stores the number of nodes in the subtree rooted at that node.

Hint: Use the divide and conquer principle.

Solution: The brute-force approach is to perform an inorder walk, keeping track of the number of
visited nodes, stopping when the node being visited is the kth one. The time complexity is O(n).
(Consider for example, a left-skewed tree—to get the first node (k = 1) we have to pass through all
the nodes.)

Looking carefully at the brute-force algorithm, observe that it does not take advantage of the
information present in the node. For example, if k is greater than the number of nodes in the left
subtree, the kth node cannot lie in the left subtree. More precisely, if the left subtree has L nodes,
then the kth node in the original tree is the (k — L)th node when we skip the left subtree. Conversely,
if k < L, the desired node lies in the left subtree. For example, the left subtree in Figure 9.1 on
Page 112 has seven nodes, so the tenth node cannot be in the left subtree. Instead it is the third node
if we skip the left subtree. This observation leads to the following program.
ef find_ith_mode_vimarytresceree, W T T

while tree:
left_size = tree.left.size if tree.left else 0
if left_size + 1 < k: # k-th node must be in right subtree of tree.
k -= left_size + 1
tree = tree.right
elif left_size == k - 1: # k-th is iter itself.
return tree

else: # k-th node must be in left subtree of iter.
tree = tree.left

122

return None # If k is between 1 and the tree 31ze. this is unreachable

Since we descend the tree in each iteration, the time complex1ty is O(h), where h is the helght of the
tree.

9.10 COMPUTE THE SUCCESSOR

The successor of a node in a binary tree is the node that appears immediately after the given node
in an inorder traversal. For example, in Figure 9.1 on Page 112, the successor of G is A, and the
successor of A is J.

Design an algorithm that computes the successor of a node in a binary tree. Assume that each node
stores its parent.

Hint: Study the node’s right subtree. What if the node does not have a right subtree?

Solution: The brute-force algorithm is to perform the inorder walk, stopping immediately at the
first node to be visited after the given node. The time complexity is that of an inorder walk, namely
O(n), where n is the number of nodes.

Looking more carefully at the structure of the tree, observe that if the given node has anonempty
right subtree, its successor must lie in that subtree, and the rest of the nodes are immaterial. For
example, in Figure 9.1 on Page 112, regardless of the structure of A’s left subtree, A’s successor must
lie in the subtree rooted at I. Similarly, B’s successor must lie in the subtree rooted at F. Furthermore,
when a node has a nonempty right subtree, its successor is the first node visited when performing
an inorder traversal on that subtree. This node is the “left-most” node in that subtree, and can be
computed by following left children exclusively, stopping when there is no left child to continue
from.

The challenge comes when the given node does not have a right subtree, e.g., H in Figure 9.1 on
Page 112. If the node is its parent’s left child, the parent will be the next node we visit, and hence
is its successor, e.g., G is H's successor. If the node is its parent’s right child, e.g., G, then we have
already visited the parent. We can determine the next visited node by iteratively following parents,
stopping when we move up from a left child. For example, from G we traverse F, then B, then A.
We stop at A, since B is the left child of A—the successor of G is A.

Note that we may reach the root without ever moving up from a left child. This happens when
the given node is the last node visited in an inorder traversal, and hence has no successor. Node P
in Flgure 9.1on Page 112 111ustrates thls scenario.

def find_ successor(node)
if node.right:
Successor is the leftmost element in node'’s right subtree.
node = node.right
while node.left:
node = node.left
return node

Find the closest ancestor whose left subtree contains node.
while node.parent and node.parent.right is node:

node = node.parent

A return value of None means node does not have successor, i.e., node is

123

the rightmost node in the tree.
return node.parent

Since the number of edges followed cannot be more than the tree height, the time complexity is
O(h), where h is the height of the tree.

9.11 IMPLEMENT AN INORDER TRAVERSAL WITH O(1) SPACE

The direct implementation of an inorder traversal using recursion has O(h) space complexity, where
h is the height of the tree. Recursion can be removed with an explicit stack, but the space complexity
remains O(h).

Write a nonrecursive program for computing the inorder traversal sequence for a binary tree.
Assume nodes have parent fields.

Hint: How can you tell whether a node is a left child or right child of its parent?

Solution: The standard idiom for an inorder traversal is traverse-left, visit-root, traverse-right.
When we complete traversing a subtree we need to return to its parent. What we do after that
depends on whether the subtree we returned from was the left subtree or right subtree of the
parent. In the former, we visit the parent, and then its right subtree; in the latter, we return from
the parent itself.

One way to do this traversal without recursion is to record the parent node for each node

we begin a traversal from. This can be done with a hash table, and entails O(n) time and space
complexity for the hash table, where 7 is the number of nodes, and h the height of the tree. The
space complexity can be reduced to O(h) by evicting a node from the hash table when we complete
traversing the subtree rooted at it.

For the given problem, since each node stores its parent, we do not need the hash table, which
improves the space complexity to O(1).

To complete this algorithm, we need to know when we return to a parent if the just completed
subtree was the parent’s left child (in which case we need to visit the parent and then traverse
its right subtree) or a right subtree (in which case we have completed traversing the parent). We
achieve this by recording the subtree’s root before we move to the parent. We can then compare the
subtree’s root with the parent’s left child. For example, for the tree in Figure 9.1 on Page 112, after
traversing the subtree rooted at C, when we return to B, we record C. Since C is B’s left child, we
still need to traverse B’s right child. When we return from F to B, we record F. Since F is not B’s left
child, it must be B’s right child, and we are done traversing B.
def inorder_traversal(tree):

prev, result = None, []
while tree:
if prev is tree.parent:
We came down to tree from prev.
if tree.left: # Keep going left.
next = tree.left
else:
result. append(tree.data)
Done with left, so go right if right is not empty. Otherwise,
go up.
next = tree.right or tree.parent

124

elif tree.left is prev:
We came up to tree from its left child.
result.append(tree.data)
Done with left, so go right if right is not empty. Otherwise, go
up.
next = tree.right or tree.parent
else: # Done with both children, so move up.
next = tree.parent

prev, tree = tree, next
return result

The time complexity is O(n) and the additional space complexity is O(1).

Alternatively, since the successor of a node is the node appearing after it in an inorder visit
sequence, we could start with the left-most node, and keep calling successor. This enables us to
reuse Solution 9.10 on Page 123.

Variant: How would you perform preorder and postorder traversals iteratively using O(1) addi-
tional space? Your algorithm cannot modify the tree. Nodes have an explicit parent field.

9.12 RECONSTRUCT A BINARY TREE FROM TRAVERSAL DATA

Many different binary trees yield the same sequence of keys in an inorder, preorder, or postorder
traversal. However, given an inorder traversal and one of any two other traversal orders of a binary
tree, there exists a unique binary tree that yields those orders, assuming each node holds a distinct
key. For example, the unique binary tree whose inorder traversal sequence is (F,B,A,E,H,C,D, I, G)
and whose preorder traversal sequence is (H, B, F, E, A, C, D, G, I) is given in Figure 9.5.

Figure 9.5: A binary tree—edges that do not terminate in nodes denote empty subtrees.

Given an inorder traversal sequence and a preorder traversal sequence of a binary tree write a
program to reconstruct the tree. Assume each node has a unique key.

Hint: Focus on the root.

125

Solution: A truly brute-force approach is to enumerate every binary tree on the inorder traversal
sequence, and check if the preorder sequence from that tree is the given one. The complexity is
enormous.

Looking more carefully at the example, the preorder sequence gives us the key of the root
node—it is the first node in the sequence. This in turn allows us to split the inorder sequence into
an inorder sequence for the left subtree, followed by the root, followed by the right subtree.

The next insight is that we can use the left subtree inorder sequence to compute the preorder
sequence for the left subtree from the preorder sequence for the entire tree. A preorder traversal
sequence consists of the root, followed by the preorder traversal sequence of the left subtree,
followed by the preorder traversal sequence of the right subtree. We know the number k of nodes
in the left subtree from the location of the root in the inorder traversal sequence. Therefore, the
subsequence of k nodes after the root in the preorder traversal sequence is the preorder traversal
sequence for the left subtree.

As a concrete example, for the inorder traversal sequence (F,B,A,E,H,C, D, 1,G) and preorder
traversal sequence (H,B,F,E,A,C,D,G,I) (in Figure 9.5 on the preceding page) the root is the
first node in the preorder traversal sequence, namely H. From the inorder traversal sequence,
we know the inorder traversal sequence for the root’s left subtree is (F,B, A,E). Therefore the
sequence (B, F, E, A), which is the four nodes after the root, H, in the preorder traversal sequence
(H,B,F,E,A,C,D,G,I) is the preorder traversal sequence for the root’s left subtree. A similar
construction applies to the root’s right subtree. This construction is continued recursively till we
get to the leaves.

Implemented naively, the above algorithm has a time complexity of O(n?). The worst-case
corresponds to a skewed tree. Finding the root within the inorder sequences takes time O(n). We
can improve the time complexity by initially building a hash table from keys to their positions in
the inorder sequence. This is the approach described below.

def binary_tree_from_preorder_inorder(preorder, inorder):
node_to_inorder_idx = {data: i for i, data in enumerate(inorder)}

Builds the subtree with preorder[preorder_start:preorder_end] and
inorder[inorder_start:inorder_end].
def binary_tree_from_preorder_inorder_helper (preorder_start, preorder_end,
inorder_start, inorder_end):
if preorder_end <= preorder_start or inorder_end <= inorder_start:
return None

root_inorder_idx = node_to_inorder_idx[preorder[preorder_start]]
left_subtree_size = root_inorder_idx - inorder_start
return BinaryTreeNode (
preorder[preorder_start],
Recursively builds the left subtree.
binary_tree_from_preorder_inorder_helper (
preorder_start + 1, preorder_start + 1 + left_subtree_size,
inorder_start, root_inorder_idx),
Recursively builds the right subtree.
binary_tree_from_preorder_inorder_helper(
preorder_start + 1 + left_subtree_size, preorder_end,
root_inorder_idx + 1, inorder_end))

return binary_tree_from_preorder_inorder_helper (90,

126

len(preorder), 0,

len(inorder))
The time complexity is O(n)—building the hash table takes O(n) time and the recursive reconstruc-
tion spends O(1) time per node. The space complexity is O(n + h) = O(n)—the size of the hash table
plus the maximum depth of the function call stack.

Variant: Solve the same problem with an inorder traversal sequence and a postorder traversal
sequence.

Variant: Let A be an array of n distinct integers. Let the index of the maximum element of A be
m. Define the max-tree on A to be the binary tree on the entries of A in which the root contains
the maximum element of A, the left child is the max-tree on A[0,m — 1] and the right child is the
max-tree on A[m + 1,n — 1]. Design an O(n) algorithm for building the max-tree of A.

9.13 RECONSTRUCT A BINARY TREE FROM A PREORDER TRAVERSAL WITH MARKERS

Many different binary trees have the same preorder traversal sequence.

In this problem, the preorder traversal computation is modified to mark where a left or right
child is empty. For example, the binary tree in Figure 9.5 on Page 125 yields the following preorder
traversal sequence:

(H,B,F,null, null, E, A, null, null, null, C,null, D,null, G,I,null, null, null)

Design an algorithm for reconstructing a binary tree from a preorder traversal visit sequence that
uses null to mark empty children.

Hint: It’s difficult to solve this problem by examining the preorder traversal visit sequence from left-to-right.

Solution: One brute-force approach is to enumerate all binary trees and compare the resulting
preorder sequence with the given one. This approach will have unacceptable time complexity.

The intuition for a better algorithm is the recognition that the first node in the sequence is the
root, and the sequence for the root’s left subtree appears before all the nodes in the root’s right
subtree. It is not easy to see where the left subtree sequence ends. However, if we solve the problem
recursively, we can assume that the routine correctly computes the left subtree, which will also tell
us where the right subtree begins.
def reconstruct_preorder (preorder):

def reconstruct_preorder_helper(preorder_iter):
subtree_key = next(preorder_iter)

if subtree_key is None:
return None

Note that reconstruct_preorder_helper updates preorder_iter. So the
order of following two calls are critical.

left_subtree = reconstruct_preorder_helper(preorder_iter)
right_subtree = reconstruct_preorder_helper(preorder_iter)

return BinaryTreeNode(subtree_key, left_subtree, right_subtree)

return reconstruct_preorder_helper (iter(preorder))

127

The time complexity is O(n), where 7 is the number of nodes in the tree.

Variant: Solve the same problem when the sequence corresponds to a postorder traversal sequence.
Is this problem solvable when the sequence corresponds to an inorder traversal sequence?

9.14 FoORM A LINKED LIST FROM THE LEAVES OF A BINARY TREE

In some applications of a binary tree, only the leaf nodes contain actual information. For example,
the outcomes of matches in a tennis tournament can be represented by a binary tree where leaves
are players. The internal nodes correspond to matches, with a single winner advancing. For such a
tree, we can link the leaves to get a list of participants.

Given a binary tree, compute a linked list from the leaves of the binary tree. The leaves should

appear in left-to-right order. For example, when applied to the binary tree in Figure 9.1 on Page 112,
your function should return {D, E, H, M, N, P).

Hint: Build the list incrementally—it’s easy if the partial list is a global.

Solution: A fairly direct approach is to use two passes—one to compute the leaves, and the other
to assign ranks to the leaves, with the left-most leaf getting the lowest rank. The final result is the
leaves sorted by ascending order of rank.

In fact, it is not necessary to make two passes—if we process the tree from left to right, the leaves
occur in the desired order, so we can incrementally add them to the result. This idea is shown
below.
def create_list_of_leaves(tree):

if not tree:
return []
if not tree.left and not tree.right:
return [tree]
First do the left subtree, and then do the right subtree.
return create_list_of_leaves(tree.left) + create_list_of_leaves(tree.right)

The time complexity is O(n), where n is the number of nodes.

9.15 COMPUTE THE EXTERIOR OF A BINARY TREE

The exterior of a binary tree is the following sequence of nodes: the nodes from the root to
the leftmost leaf, followed by the leaves in left-to-right order, followed by the nodes from the
rightmost leaf to the root. (By leftmost (rightmost) leaf, we mean the leaf that appears first (last)
in an inorder traversal.) For example, the exterior of the binary tree in Figure 9.1 on Page 112 is
(A,B,C,D,E,H,M,N,P,O,I).

Write a program that computes the exterior of a binary tree.
Hint: Handle the root’s left child and right child in mirror fashion.

Solution: A brute-force approach is to use a case analysis. We need the nodes on the path from the
root to the leftmost leaf, the nodes on the path from the root to the rightmost leaf, and the leaves in
left-to-right order.

128

We already know how to compute the leaves in left-to-right order (Solution 9.14 on the facing
page). The path from root to leftmost leaf is computed by going left if a left child exists, and otherwise
going right. When we reach a leaf, it must be the leftmost leaf. A similar computation yields the
nodes on the path from the root to the rightmost leaf. The time complexity is O(h + n + h) = O(n),
where n and h are the number of nodes and the height of the tree, respectively. The implementation
is a little tricky, because some nodes appear in multiple sequences. For example, in Figure 9.1 on
Page 112, the path from the root to the leftmost leaf is (A, B, C, D), the leaves in left-to-right order are
(D,E,H,M,N, P), and the path from the root to the rightmost leaf is (A, I, O, P). Note the leftmost

leaf, D, the rightmost leaf, P, and the root, A, appear in two sequences.

We can simplify the above approach by computing the nodes on the path from the root to the
leftmost leaf and the leaves in the left subtree in one traversal. After that, we find the leaves in
the right subtree followed by the nodes from the rightmost leaf to the root with another traversal.
This is the program shown below. For the tree in Figure 9.1 on Page 112, the first traversal returns
(B,C,D,E,H), and the second traversal returns (M, N, P,O,I). We append the first and then the
second sequences to (A).
def exterior_binary_tree(tree):

def is_leaf(node):
return not node.left and not node.right

Computes the nodes from the root to the leftmost leaf followed by all
the leaves in subtree.
def left_boundary_and_leaves (subtree, is_boundary):
if not subtree:
return []
return (([subtree] if is_boundary
or is_leaf(subtree) else []) + left_boundary_and_leaves(
subtree.left, is_boundary) + left_boundary_and_leaves(
subtree.right, is_boundary and not subtree.left))

Computes the leaves in left-to-right order followed by the rightmost
leaf to the root path in subtree.
def right_boundary_and_leaves(subtree, is_boundary):
if not subtree:
return []
return (right_boundary_and_leaves(subtree.left, is_boundary
and not subtree.right) +
right_boundary_and_leaves(subtree.right, is_boundary) +
([subtree] if is_boundary or is_leaf(subtree) else []))

return ([tree] + left_boundary_and_leaves(tree.left, is_boundary=True) +
right_boundary_and_leaves (tree.right, is_boundary=True)
if tree else [])

The time complexity is O(n).

9.16 COMPUTE THE RIGHT SIBLING TREE

For this problem, assume that each binary tree node has a extra field, call it level-next, that holds a
binary tree node (this field is distinct from the fields for the left and right children). The level-next

129

O

Figure 9.6: Assigning each node’s level-next field to its right sibling in a perfect binary tree. A dashed arrow indicates
the value held by the level-next field after the update. No dashed arrow is shown for the nodes on the path from the root
to the rightmost leaf, i.e., A, 1, M, and O, since these nodes have no right siblings.

field will be used to compute a map from nodes to their right siblings. The input is assumed to be
perfect binary tree. See Figure 9.6 for an example.

Write a program that takes a perfect binary tree, and sets each node’s level-next field to the node on
its right, if one exists.

Hint: Think of an appropriate traversal order.

Solution: A brute-force approach is to compute the depth of each node, which is stored in a hash
table. Next we order nodes at the same depth using inorder visit times. Then we set each node’s
level-next field according to this order. The time and space complexity are O(n), where 1 is the
number of nodes.

The key insight into solving this problem with better space complexity is to use the structure of
the tree. Since it is a perfect binary tree, for a node which is a left child, its right sibling is just its
parent’s right child. For a node which is a right child, its right sibling is its parent’s right sibling’s
left child. For example in Figure 9.6, since C is B’s left child, C’s right sibling is B’s right child, i.e.,
F. Since Node F is B’s right child, F’s right sibling is B’s right sibling’s left child, i.e.,].

For this approach to work, we need to ensure that we process nodes level-by-level, left-to-right.
Traversing a level in which the level-next field is set is trivial. As we do the traversal, we set the
level-next fields for the nodes on the level below using the principle outlined above. To get to the
next level, we record the starting node for each level. When we complete that level, the next level
is the starting node’s left child.
def construct_right_sibling(treej? o

def populate_children_next_field(start_node):
while start_node and start_node.left:
Populate left child’'s next field.
start_node.left.next = start_node.right
Populate right child’'s next field if iter is not the last node of
level.

start_node.right.next = start_node.next and start_node.next.left
start_node = start_node.next

while tree and tree.left:

populate_children_next_field(tree)
tree = tree.left

130

Figure 9.7: Assigning each node’s level-next field to its right sibling in a general binary tree. A dashed arrow indicates
the value held by the level-next field after the update.

Since we perform O(1) computation per node, the time complexity is O(n). The space complexity is
o).

Variant: Solve the same problem when there is no level-next field. Your result should be stored in
the right child field.

Variant: Solve the same problem for a general binary tree. See Figure 9.7 for an example.

131

CHAPTER

10

Heaps

Using F-heaps we are able to obtain improved running times
for several network optimization algorithms.

— “Fibonacci heaps and their uses,”
M. L. FrRepmaN AND R. E. Tarjan, 1987

A heap is a specialized binary tree. Specifically, it is a complete binary tree as defined on Page 113.
The keys must satisfy the heap property—the key at each node is at least as great as the keys stored at
its children. See Figure 10.1(a) for an example of a max-heap. A max-heap can be implemented as
an array; the children of the node at index i are at indices 2i + 1 and 2i + 2. The array representation
for the max-heap in Figure 10.1(a) is (561, 314, 401, 28,156, 359, 271, 11, 3).

A max-heap supports O(log n) insertions, O(1) time lookup for the max element, and O(logn)
deletion of the max element. The extract-max operation is defined to delete and return the maximum
element. See Figure 10.1(b) for an example of deletion of the max element. Searching for arbitrary
keys has O(n) time complexity.

A heap is sometimes referred to as a priority queue because it behaves like a queue, with one
difference: each element has a “priority” associated with it, and deletion removes the element with
the highest priority.

The min-heap is a completely symmetric version of the data structure and supports O(1) time
lookups for the minimum element.

1359] [271]

(a) A max-heap. Note that the root holds the maximum key, (b) After the deletion of max of the heap in (a). Deletion is per-

561. formed by replacing the root's key with the key at the last leaf
and then recovering the heap property by repeatedly exchang-
ing keys with children.

Figure 10.1: A max-heap and deletion on that max-heap.

132

Heaps boot camp

Suppose you were asked to write a program which takes a sequence of strings presented in “stream-
ing” fashion: you cannot back up to read an earlier value. Your program must compute the k longest
strings in the sequence. All that is required is the k longest strings—it is not required to order these
strings.

As we process the input, we want to track the k longest strings seen so far. Out of these k strings,

the string to be evicted when a longer string is to be added is the shortest one. A min-heap (not
a max-heap!) is the right data structure for this application, since it supports efficient find-min,
remove-min, and insert. In the program below we use a heap with a custom compare function,
wherein strings are ordered by length.
def top_k(k, stream):
Entries are compared by their lengths.
min_heap = [(len(s), s) for s in itertools.islice(stream, k)]
heapq.heapify(min_heap)
for next_string in stream:
Push next_string and pop the shortest string in min_heap.
heapq.heappushpop (min_heap, (len(next_string), next_string))
return [p[1l] for p in heapg.nsmallest(k, min_heap)]

Each string is processed in O(logk) time, which is the time to add and to remove the minimum
element from the heap. Therefore, if there are n strings in the input, the time complexity to process
all of them is O(n logk).

We could improve best-case time complexity by first comparing the new string’s length with
the length of the string at the top of the heap (getting this string takes O(1) time) and skipping the
insert if the new string is too short to be in the set.

Use a heap when all you care about is the largest or smallest elements, and you do not need to
support fast lookup, delete, or search operations for arbitrary elements.

A heap is a good choice when you need to compute the k largest or k smallest elements in a
_ collection. For the former, use a min-heap, for the latter, use a max-heap.

Table 10.1: Top Tips for Heaps

Know your heap libraries

Heap functionality in Python is provided by the heapq module. The operations and functions we
will use are
e heapq.heapify(L), which transforms the elements in L into a heap in-place,
e heapq.nlargest(k, L) (heapq.nsmallest(k, L))returns the klargest (smallest) elements in
L,
e heapq.heappush(h, e), which pushes a new element on the heap,
e heapq.heappop(h), which pops the smallest element from the heap,
e heapq.heappushpop(h, a), which pushes a on the heap and then pops and returns the
smallest element, and
e e = h[0], which returns the smallest element on the heap without popping it.
[]
It's very important to remember that heapq only provides min-heap functionality. If you need to
build a max-heap on integers or floats, insert their negative to get the effect of a max-heap using

133

heapq. For objects, implement __1t()__ appropriately. Problem 10.4 on Page 137 illustrates how
use a max-heap.

10.1 MERGE SORTED FILES

This problem is motivated by the following scenario. You are given 500 files, each containing stock
trade information for an S&P 500 company. Each trade is encoded by a line in the following format:
1232111,AAPL, 30,456.12.

The first number is the time of the trade expressed as the number of milliseconds since the start
of the day’s trading. Lines within each file are sorted in increasing order of time. The remaining
values are the stock symbol, number of shares, and price. You are to create a single file containing
all the trades from the 500 files, sorted in order of increasing trade times. The individual files are
of the order of 5-100 megabytes; the combined file will be of the order of five gigabytes. In the
abstract, we are trying to solve the following problem.

Write a program that takes as input a set of sorted sequences and computes the union of these
sequences as a sorted sequence. For example, if the input is (3,5,7), (0,6), and (0, 6,28), then the
outputis (0,0,3,5,6,6,7,28).

Hint: Which part of each sequence is significant as the algorithm executes?

Solution: A brute-force approach is to concatenate these sequences into a single array and then sort
it. The time complexity is O(n log n), assuming there are n elements in total.

The brute-force approach does not use the fact that the individual sequences are sorted. We
can take advantage of this fact by restricting our attention to the first remaining element in each
sequence. Specifically, we repeatedly pick the smallest element amongst the first element of each of
the remaining part of each of the sequences.

A min-heap is ideal for maintaining a collection of elements when we need to add arbitrary
values and extract the smallest element.

For ease of exposition, we show how to merge sorted arrays, rather than files. As a concrete
example, suppose there are three sorted arrays to be merged: (3,5,7), (0,6), and (0,6,28). For
simplicity, we show the min-heap as containing entries from these three arrays. In practice, we
need additional information for each entry, namely the array it is from, and its index in that array.
(In the file case we do not need to explicitly maintain an index for next unprocessed element in each
sequence—the file I/O library tracks the first unread entry in the file.)

The min-heap is initialized to the first entry of each array, i.e., it is {3, 0, 0}. We extract the smallest
entry, 0, and add it to the output which is (0). Then we add 6 to the min-heap which is {3, 0, 6} now.
(We chose the 0 entry corresponding to the third array arbitrarily, it would be perfectly acceptable
to choose from the second array.) Next, extract 0, and add it to the output which is (0,0); then add
6 to the min-heap which is {3, 6,6}. Next, extract 3, and add it to the output which is (0, 0, 3); then
add 5 to the min-heap which is {5, 6, 6}. Next, extract 5, and add it to the output which is (0,0, 3, 5);
then add 7 to the min-heap which is {7,6,6}. Next, extract 6, and add it to the output which is
(0,0,3,5,6); assuming 6 is selected from the second array, which has no remaining elements, the
min-heap is {7,6}. Next, extract 6, and add it to the output which is (0,0, 3,5, 6, 6); then add 28 to
the min-heap which is {7,28}. Next, extract 7, and add it to the output which is (0,0, 3, 5, 6, 6, 7); the
min-heap is {28}. Next, extract 28, and add it to the output which is (0,0,3,5, 6, 6,7, 28); now, all
elements are processed and the output stores the sorted elements.

def merge_sorted_arrays(sorted_arrays):

134

min_heap = []
Builds a list of iterators for each array in sorted_arrays.
sorted_arrays_iters = [iter(x) for x in sorted_arrays]

Puts first element from each iterator in min_heap.
for i, it in enumerate(sorted_arrays_iters):
first_element = next(it, None)
if first_element is not None:
heapq.heappush(min_heap, (first_element, i))

result = []
while min_heap:
smallest_entry, smallest_array_i = heapq.heappop(min_heap)
smallest_array_iter = sorted_arrays_iters[smallest_array_i]
result.append(smallest_entry)
next_element = next(smallest_array_iter, None)
if next_element is not None:
heapq.heappush(min_heap, (next_element, smallest_array_i))
return result

Pythonic solution, uses the heapq.merge() method which takes multiple inputs.
def merge_sorted_arrays_pythonic(sorted_arrays):
return list(heapq.merge(*sorted_arrays))

Let k be the number of input sequences. Then there are no more than k elements in the min-heap.
Both extract-min and insert take O(log k) time. Hence, we can do the merge in O(n logk) time. The
space complexity is O(k) beyond the space needed to write the final result. In particular, if the data
comes from files and is written to a file, instead of arrays, we would need only O(k) additional
storage.

Alternatively, we could recursively merge the k files, two at a time using the merge step from
merge sort. We would go from k to k/2 then k/4, etc. files. There would be logk stages, and each
has time complexity O(n), so the time complexity is the same as that of the heap-based approach,
i.e., O(nlogk). The space complexity of any reasonable implementation of merge sort would end
up being O(n), which is considerably worse than the heap based approach when k <« n.

10.2 SORT AN INCREASING-DECREASING ARRAY

An array is said to be k-increasing-decreasing if elements repeatedly increase up to a certain index
after which they decrease, then again increase, a total of k times. This is illustrated in Figure 10.2.

T T~ T

57 131 | 493 | 294 | 221 | 339 | 418 | 452 | 442 | 190

A[0] A[l] Al2] A[3] Al4] A[5] Al6] Al7] Alg] A[9]

Figure 10.2: A 4-increasing-decreasing array.

Design an efficient algorithm for sorting a k-increasing-decreasing array.

135

Hint: Can you cast this in terms of combining k sorted arrays?

Solution: The brute-force approachis tosort the array, without taking advantage of the k-increasing-
decreasing property. Sorting algorithms run in time O(n log n), where is the length of the array.
If k is significantly smaller than n we can do better. For example, if k = 2, the input array consists
of two subarrays, one increasing, the other decreasing. Reversing the second subarray yields two
sorted arrays, and the result is their merge. It is fairly easy to merge two sorted arrays in O(n) time.
Generalizing, we could first reverse the order of each of the decreasing subarrays. For the
example in Figure 10.2 on the preceding page, we would decompose A into four sorted arrays—
(57,131,493), (221,294), (339,418,452), and (190,442). Now we can use the techniques in Solu-
tion 10.1 on Page 134 to merge these.

def sort_k_increasing_decreasing_array(A):
Decomposes A into a set of sorted arrays.
sorted_subarrays = []
INCREASING, DECREASING = range(2)
subarray_type = INCREASING
start_idx = 0
for i in range(l, len(A) + 1):
if (i == len(A) or # A is ended. Adds the last subarray.
(A[i - 1] < A[i] and subarray_type == DECREASING) or
(A[i - 1] >= A[i] and subarray_type == INCREASING)):
sorted_subarrays.append(A[start_idx:i] if subarray_type ==
INCREASING else A[i - 1l:start_idx - 1:-1])
start_idx = i
subarray_type = (DECREASING
if subarray_type == INCREASING else INCREASING)
return merge_sorted_arrays(sorted_subarrays)

Pythonic solution, uses a stateful object to trace the monotonic subarrays.
def sort_k_increasing_decreasing_array_pythonic(A):
class Monotonic:
def __init__(self):
self._last = float(’'-inf’)

def __call__(self, curr):
res = curr < self._last
self._last = curr
return res

return merge_sorted_arrays ([
list(group)[::-1 if is_decreasing else 1]
for is_decreasing, group in itertools.groupby(A, Monotonic())
D
Just as in Solution 10.1 on Page 134, the time complexity is O(n log k) time.
10.3 SORT AN ALMOST-SORTED ARRAY

Often data is almost-sorted—for example, a server receives timestamped stock quotes and earlier
quotes may arrive slightly after later quotes because of differences in server loads and network
routes. In this problem we address efficient ways to sort such data.

136

Write a program which takes as input a very long sequence of numbers and prints the numbers in
sorted order. Each number is at most k away from its correctly sorted position. (Such an array is
sometimes referred to as being k-sorted.) For example, no number in the sequence (3,-1,2,6,4,5,8)
is more than 2 away from its final sorted position.

Hint: How many numbers must you read after reading the ith number to be sure you can place it in the correct
location?

Solution: The brute-force approach is to put the sequence in an array, sort it, and then print it. The
time complexity is O(nlog n), where n is the length of the input sequence. The space complexity is
O(n).

We can do better by taking advantage of the almost-sorted property. Specifically, after we have
read k + 1 numbers, the smallest number in that group must be smaller than all following numbers.
For the given example, after we have read the first 3 numbers, 3, -1, 2, the smallest, —1, must be
globally the smallest. This is because the sequence was specified to have the property that every
number is at most 2 away from its final sorted location and the smallest number is at index 0 in
sorted order. After we read in the 4, the second smallest number must be the minimum of 3, 2,4,
ie., 2.

To solve this problem in the general setting, we need to store k + 1 numbers and want to be
able to efficiently extract the minimum number and add a new number. A min-heap is exactly
what we need. We add the first k numbers to a min-heap. Now, we add additional numbers to the
min-heap and extract the minimum from the heap. (When the numbers run out, we just perform
the extraction.)
def sort_approximately_sorted_array(sequence, k):

result = []

min_heap = []

Adds the first k elements into min_heap. Stop if there are fewer than k
elements.

for x in itertools.islice(sequence, k):
heapq.heappush(min_heap, x)

For every new element, add it to min_heap and extract the smallest.
for x in sequence:

smallest = heapq.heappushpop(min_heap, x)

result.append(smallest)

sequence is exhausted, iteratively extracts the remaining elements.
while min_heap:

smallest = heapq.heappop(min_heap)

result.append(smallest)

return result

The time complexity is O(n log k). The space complexity is O(k).

10.4 COMPUTE THE k CLOSEST STARS

Consider a coordinate system for the Milky Way, in which Earth is at (0, 0, 0). Model stars as points,
and assume distances are in light years. The Milky Way consists of approximately 102 stars, and
their coordinates are stored in a file.

How would you compute the k stars which are closest to Earth?

137

Hint: Suppose you know the k closest stars in the first n stars. If the (n + 1)th star is to be added to the set of k
closest stars, which element in that set should be evicted?

Solution: If RAM was not a limitation, we could read the data into an array, and compute the
k smallest elements using sorting. Alternatively, we could use Solution 11.8 on Page 153 to find
the kth smallest element, after which it is easy to find the k smallest elements. For both, the space
complexity is O(n), which, for the given dataset, cannot be stored in RAM.

Intuitively, we only care about stars close to Earth. Therefore, we can keep a set of candidates,
and iteratively update the candidate set. The candidates are the k closest stars we have seen so
far. When we examine a new star, we want to see if it should be added to the candidates. This
entails comparing the candidate that is furthest from Earth with the new star. To find this candidate
efficiently, we should store the candidates in a container that supports efficiently extracting the
maximum and adding a new member.

A max-heap is perfect for this application. Conceptually, we start by adding the first k stars
to the max-heap. As we process the stars, each time we encounter a new star that is closer to
Earth than the star which is the furthest from Earth among the stars in the max-heap, we delete
from the max-heap, and add the new one. Otherwise, we discard the new star and continue. We
can simplify the code somewhat by simply adding each star to the max-heap, and discarding the
maximum element from the max-heap once it contains k + 1 elements.
class Star:
def __init__(self, x, y, 2z):

self.x, self.y, self.z =x, vy, 2z

@property
def distance(self):
return math.sqrt(self.x**2 + self.y**2 + self.z**2)

def __lt__(self, rhs):
return self.distance < rhs.distance

def find_closest_k_stars(stars, k):
max_heap to store the closest k stars seen so far.
max_heap = []
for star in stars:
Add each star to the max-heap. If the max-heap size exceeds k, remove
the maximum element from the max-heap.
As python has only min-heap, insert tuple (negative of distance, star)
to sort in reversed distance order.
heapq.heappush(max_heap, (-star.distance, star))
if len(max_heap) == k + 1:
heapq.heappop (max_heap)

Iteratively extract from the max-heap, which yields the stars sorted
according from furthest to closest.
return [s[1] for s in heapq.nlargest(k, max_heap)]

The time complexity is O(n log k) and the space complexity is O(k).

Variant: Design an O(nlogk) time algorithm that reads a sequence of n elements and for each
element, starting from the kth element, prints the kth largest element read up to that point. The

138

length of the sequence is not known in advance. Your algorithm cannot use more than O(k)
additional storage. What are the worst-case inputs for your algorithm?

10.5 COMPUTE THE MEDIAN OF ONLINE DATA

You want to compute the running median of a sequence of numbers. The sequence is presented to
you in a streaming fashion—you cannot back up to read an earlier value, and you need to output
the median after reading in each new element. For example, if the inputis 1,0, 3,5, 2,0, 1 the output
is1,0.5,1,2,2,1.5,1.

Design an algorithm for computing the running median of a sequence.
Hint: Avoid looking at all values each time you read a new value.

Solution: The brute-force approach is to store all the elements seen so far in an array and compute
the median using, for example Solution 11.8 on Page 153 for finding the kth smallest entry in an
array. This has time complexity O(n?) for computing the running median for the first elements.

The shortcoming of the brute-force approach is that it is not incremental, i.e., it does not take
advantage of the previous computation. Note that the median of a collection divides the collection
into two equal parts. When a new element is added to the collection, the parts can change by at
most one element, and the element to be moved is the largest of the smaller half or the smallest of
the larger half.

We can use two heaps, a max-heap for the smaller half and a min-heap for the larger half. We
will keep these heaps balanced in size. The max-heap has the property that we can efficiently extract
the largest element in the smaller part; the min-heap is similar.

For example, let the input valuesbe 1,0, 3,5,2,0,1. Let L and H be the contents of the min-heap
and the max-heap, respectively. Here is how they progress:

(1.) Readin 1: L =[1],H =[], median is 1.
(2.) Read in 0: L = [1],H = [0], median is (1 + 0)/2 = 0.5.
(3.) Read in 3: L = [1, 3], H = [0], median is 1.
(4.) Read in 5: L = [3,5],H = [1,0], median is (3 + 1)/2 = 2.
(5.) Readin 2: L =[2,3,5],H = [1, 0], median is 2.
(6.) Readin 0: L =[2,3,5],H =[1,0,0], median is (2 + 1)/2 = 1.5.
(7) Readin1: L =[1,2,3,5],H =[1,0,0], median is 1.
def online_median(sequence):
min_heap stores the larger half seen so far.
min_heap = []
max_heap stores the smaller half seen so far.
values in max_heap are negative

max_heap = []
result = []

for x in sequence:
heapq.heappush(max_heap, -heapq.heappushpop(min_heap, x))
Ensure min_heap and max_heap have equal number of elements if an even
number of elements is read; otherwise, min_heap must have one more
element than max_heap.
if len(max_heap) > len(min_heap):
heapq.heappush(min_heap, -heapq.heappop(max_heap))

result.append(8.5 * (min_heap([®] + (-max_heap[0]))

139

if len(min_heap) == len(max_heap) else min_heap([0])
return result

The time complexity per entry is O(log n), corresponding to insertion and extraction from a heap.

10.6 COMPUTE THE k LARGEST ELEMENTS IN A MAX-HEAP

A heap contains limited information about the ordering of elements, so unlike a sorted array or a
balanced BST, naive algorithms for computing the k largest elements have a time complexity that
depends linearly on the number of elements in the collection.

Given a max-heap, represented as an array A, design an algorithm that computes the k
largest elements stored in the max-heap. You cannot modify the heap. For example, if
the heap is the one shown in Figure 10.1(a) on Page 132, then the array representation is
(561,314, 401, 28,156, 359, 271, 11, 3), the four largest elements are 561,314,401, and 359.

Solution: The brute-force algorithm is to perform k extract-max operations. The time complexity is
O(klog n), where n is the number of elements in the heap. Note that this algorithm entails modifying
the heap.

Another approach is to use an algorithm for finding the kth smallest element in an array, such
as the one described in Solution 11.8 on Page 153. That has time complexity almost certain O(n),
and it too modifies the heap.

The following algorithm is based on the insight that the heap has partial order information,
specifically, a parent node always stores value greater than or equal to the values stored at its
children. Therefore, the root, which is stored in A[0], must be one of the k largest elements—in fact,
itis the largest element. The second largest element must be the larger of the root’s children, which
are A[1] and A[2]—this is the index we continue processing from.

The ideal data structure for tracking the index to process next is a data structure which support
fast insertions, and fast extract-max, i.e., in a max-heap. So our algorithm is to create a max-heap
of candidates, initialized to hold the index 0, which serves as a reference to A[0]. The indices in
the max-heap are ordered according to corresponding value in A. We then iteratively perform k
extract-max operations from the max-heap. Each extraction of an index i is followed by inserting
the indices of i’s left child, 2i + 1, and right child, 2i + 2, to the max-heap, assuming these children
exist.

def k_largest_in_binary_heap(A, k):
if k <= 0:
return []

Stores the (-value, index)-pair in candidate_max_heap. This heap is
ordered by value field. Uses the negative of value to get the effect of
a max heap.
candidate_max_heap = []
The largest element in A is at index 0.
candidate_max_heap.append ((-A[0], ©))
result = []
for _ in range(k):
candidate_idx = candidate_max_heap[0][1]
result.append(-heapq.heappop (candidate_max_heap) [6])

left_child_idx = 2 * candidate_idx + 1
if left_child_idx < len(A):

140

heapq.heappush(candidate_max_heap, (-A[left_child_idx],
left_child_idx))
right_child_idx = 2 * candidate_idx + 2
if right_child_idx < len(A):
heapq.heappush(candidate_max_heap, (-A[{right_child_idx],
right_child_idx))
return result
The total number of insertion and extract-max operations is O(k), yielding an O(k logk) time com-
plexity, and an O(k) additional space complexity. This algorithm does not modify the original
heap.

141

CHAPTER

Searching

— “The Anatomy of A Large-Scale Hypertextual Web Search Engine,”
S. M. Brin AND L. Pacg, 1998

Search algorithms can be classified in a number of ways. Is the underlying collection static or
dynamic, i.e., inserts and deletes are interleaved with searching? Is it worth spending the com-
putational cost to preprocess the data so as to speed up subsequent queries? Are there statistical
properties of the data that can be exploited? Should we operate directly on the data or transform
it?

In this chapter, our focus is on static data stored in sorted order in an array. Data structures
appropriate for dynamic updates are the subject of Chapters 10, 12, and 14.

The first collection of problems in this chapter are related to binary search. The second collection
pertains to general search.

142

Binary search

Given an arbitrary collection of n keys, the only way to determine if a search key is present is by
examining each element. This has O(n) time complexity. Fundamentally, binary search is a natural
elimination-based strategy for searching a sorted array. The idea is to eliminate half the keys from
consideration by keeping the keys in sorted order. If the search key is not equal to the middle
element of the array, one of the two sets of keys to the left and to the right of the middle element
can be eliminated from further consideration.

Questions based on binary search are ideal from the interviewers perspective: it is a basic
technique that every reasonable candidate is supposed to know and it can be implemented in a
few lines of code. On the other hand, binary search is much trickier to implement correctly than it
appears—you should implement it as well as write corner case tests to ensure you understand it
properly.

Many published implementations are incorrect in subtle and not-so-subtle ways—a study re-
ported that it is correctly implemented in only five out of twenty textbooks. Jon Bentley, in his book
“Programming Pearls” reported that he assigned binary search in a course for professional program-
mers and found that 90% failed to code it correctly despite having ample time. (Bentley’s students
would have been gratified to know that his own published implementation of binary search, in
a column titled “Writing Correct Programs”, contained a bug that remained undetected for over
twenty years.)

Binary search can be written in many ways—recursive, iterative, different idioms for condi-
tionals, etc. Here is an iterative implementation adapted from Bentley’s book, which includes his
bug.
def bs-eba-x;clbxb(t , >A).:

L, U=20, len(A) -1
while L <= U:
M=+ /2
if A[M] < t:
L=M+1
elif A[M] == t:
return M
else:
U=M-1
return -1

Theerror is in the assignmentM = (L + U) / 2inLine4, which can potentially lead to overflow.
This overflow can be avoided by using = L + (U - L) / 2.

The time complexity of binary search is given by T(n) = T(n/2) + ¢, where c is a constant. This
solves to T(n) = O(logn), which is far superior to the O(n) approach needed when the keys are
unsorted. A disadvantage of binary search is that it requires a sorted array and sorting an array
takes O(n logn) time. However, if there are many searches to perform, the time taken to sort is not
an issue.

Many variants of searching a sorted array require a little more thinking and create opportunities
for missing corner cases.

143

Searching boot camp

When objects are comparable, they can be sorted and searched for using library search functions.
Typically, the language knows how to compare built-in types, e.g., integers, strings, library classes
for date, URLs, SQL timestamps, etc. However, user-defined types used in sorted collections
must explicitly implement comparison, and ensure this comparison has basic properties such as
transitivity. (If the comparison is implemented incorrectly, you may find a lookup into a sorted
collection fails, even when the item is present.)

Suppose we are given as input an array of students, sorted by descending GPA, with ties broken
on name. In the program below, we show how to use the library binary search routine to perform
fast searches in this array. In particular, we pass binary search a custom comparator which compares
students on GPA (higher GPA comes first), with ties broken on name.

Student = collections.namedtuple(’Student’, (’'name’, ’'grade_point_average'))

def comp_gpa(student):
return (-student.grade_point_average, student.name)

def search_student(students, target, comp_gpa):
i = bisect.bisect_left([comp_gpa(s) for s in students], comp_gpa(target))
return 0 <= i < len(students) and students[i] == target

Assuming the i-th element in the sequence can be accessed in O(1) time, the time complexity of the
program is O(log n).

Binary search is an effective search tool. It is applicable to more than just searching in sorted
arrays, e.g., it can be used to search an interval of real numbers or integers.

If your solution uses sorting, and the computation performed after sorting is faster than sorting,
e.g., O(n) or O(log n), look for solutions that do not perform a complete sort.

Consider time/space tradeoffs, such as making multiple passes through the data.

Table 11.1: Top Tips for Searching

Know your searching libraries

The bisect module provides binary search functions for sorted list. Specifically, assuming a is a
sorted list.

¢ To find the first element that is not less than a targeted value, use bisect.bisect_left(a,x).
This call returns the index of the first entry that is greater than or equal to the targeted value.
If all elements in the list are less than x, the returned value is 1len(a).

e To find the first element that is greater than a targeted value, usebisect .bisect_right(a,x).
This call returns the index of the first entry that is greater than the targeted value. If all elements
in the list are less than or equal to x, the returned value is 1len(a).

In an interview, if it is allowed, use the above functions, instead of implementing your own binary
search.

144

11.1 SEARCH A SORTED ARRAY FOR FIRST OCCURRENCE OF k

Binary search commonly asks for the index of any element of a sorted array that is equal to a
specified element. The following problem has a slight twist on this.

-14 -10 2 108 108 243 285 285 285 401

A[0] All] A[2] A3] A[4] A[5] Al6) Al7] Al8] A[9]

Figure 11.1: A sorted array with repeated elements.

Write a method that takes a sorted array and a key and returns the index of the first occurrence of
that key in the array. Return —1 if the key does not appear in the array. For example, when applied
to the array in Figure 11.1 your algorithm should return 3 if the given key is 108; if it is 285, your
algorithm should return 6.

Hint: What happens when every entry equals k? Don’t stop when you first see k.

Solution: A naive approach is to use binary search to find the index of any element equal to the key,
k. (If k is not present, we simply return —1.) After finding such an element, we traverse backwards
from it to find the first occurrence of that element. The binary search takes time O(logn), where n is
the number of entries in the array. Traversing backwards takes O(n) time in the worst-case—consider
the case where entries are equal to k.

The fundamental idea of binary search is to maintain a set of candidate solutions. For the current
problem, if we see the element at index i equals k, although we do not know whether i is the first
element equal to k, we do know that no subsequent elements can be the first one. Therefore we
remove all elements with index i + 1 or more from the candidates.

Let’s apply the above logic to the given example, with k = 108. We start with all indices as
candidates, i.e., with [0,9]. The midpoint index, 4 contains k. Therefore we can now update the
candidate set to [0, 3], and record 4 as an occurrence of k. The next midpoint is 1, and this index
contains —10. We update the candidate set to [2,3]. The value at the midpoint 2 is 2, so we update
the candidate set to [3, 3]. Since the value at this midpoint is 108, we update the first seen occurrence
of k to 3. Now the interval is [3, 2], which is empty, terminating the search—the result is 3.
def- Sea‘l‘.‘VC‘l‘l‘_.firSt_Of_k(Av, k): o - - V 7 R V

left, right, result = 0, len(a) - 1, -1
A[left:right + 1] is the candidate set.
while left <= right:
mid = (left + right) // 2
if A[mid] > k:
right = mid - 1
elif A[mid] ==
result = mid
right = mid - 1 # Nothing to the right of mid can be solution.
else: # A[mid] < k.
left = mid + 1
return result

145

The complexity bound is still O(log n)—this is because each iteration reduces the size of the candidate
set by half.

Variant: Design an efficient algorithm that takes a sorted array and a key, and finds the index of
the first occurrence of an element greater than that key. For example, when applied to the array in
Figure 11.1 on the preceding page your algorithm should return 9 if the key is 285; if it is —13, your
algorithm should return 1.

Variant: Let A be an unsorted array of n integers, with A[0] > A[1] and A[n - 2] < A[n - 1]. Call an
index i a local minimum if A[] is less than or equal to its neighbors. How would you efficiently find
a local minimum, if one exists?

Variant: Write a program which takes a sorted array A of integers, and an integer k, and returns
the interval enclosing k, i.e., the pair of integers L and U such that L is the first occurrence of k in
A and U is the last occurrence of k in A. If k does not appear in A, return [-1, —1]. For example if
A=(1,2,2444711,11,13) and k = 11, you should return [7, 8.

Variant: Write a program which tests if p is a prefix of a string in an array of sorted strings.

11.2 SEARCH A SORTED ARRAY FOR ENTRY EQUAL TO ITS INDEX

Design an efficient algorithm that takes a sorted array of distinct integers, and returns an index i
such that the element at index i equals i. For example, when the input is (-2,0,2,3,6,7,9) your
algorithm should return 2 or 3.

Hint: Reduce this problem to ordinary binary search.

Solution: A brute-force approach is to iterate through the array, testing whether the ith entry equals
i. The time complexity is O(n), where n is the length of the array.

The brute-force approach does not take advantage of the fact that the array (call it A) is sorted
and consists of distinct elements. In particular, note that the difference between an entry and its
index increases by at least 1 as we iterate through A. Observe that if A[j] > j, then no entry after j
can satisfy the given criterion. This is because each element in the array is at least 1 greater than the
previous element. For the same reason, if A[j] < j, no entry before j can satisfy the given criterion.

The above observations can be directly used to create a binary search type algorithm for finding
an i such that A[i] = i. A slightly simpler approach is to search the secondary array B whose ith
entry is A[i] — i for 0, which is just ordinary binary search. We do not need to actually create the
secondary array, we can simply use A[i] — i wherever B[i] is referenced.

For the given example, the secondary array B is (-2,-1,0,0, 2,2, 3). Binary search for 0 returns
the desired result, i.e., either of index 2 or 3.
def se;rch_entry_eéu;l;té_i£s_indefoj:

left, right = 0, len(a) -1
while left <= right:
mid = (left + right) // 2
difference = A[mid] - mid
A[mid] == mid if and only if difference == 0.
if difference ==

return mid
elif difference > 0:

146

right = mid - 1
else: # difference < 0.
left = mid + 1
return -1
The time complexity is the same as that for binary search , i.e., O(log n), where n is the length of A.

Variant: Solve the same problem when A is sorted but may contain duplicates.

11.3 SEARCH A CYCLICALLY SORTED ARRAY

An array is said to be cyclically sorted if it is possible to cyclically shift its entries so that it becomes
sorted. For example, the array in Figure 11.2 is cyclically sorted—a cyclic left shift by 4 leads to a
sorted array.

378 478 550 631 103 203 220 234 279 368

Al0] Al1] A2) A[3] A[4) A[5] Al6) Al7] A[8] A[9]

Figure 11.2: A cyclically sorted array.

Design an O(log n) algorithm for finding the position of the smallest element in a cyclically sorted
array. Assume all elements are distinct. For example, for the array in Figure 11.2, your algorithm
should return 4.

Hint: Use the divide and conquer principle.

Solution: A brute-force approach is to iterate through the array, comparing the running minimum
with the current entry. The time complexity is O(n), where n is the length of the array.

The brute-force approach does not take advantage of the special properties of the array, A. For
example, for any m, if A[m] > A[n — 1], then the minimum value must be an index in the range
[m +1,n —1]. Conversely, if A[m] < A[n — 1], then no index in the range [m + 1,1 — 1] can be the
index of the minimum value. (The minimum value may be at A[m].) Note that it is not possible for
A[m] = A[n - 1], since it is given that all elements are distinct. These two observations are the basis
for a binary search algorithm, described below.

def search_smallest(A):
left, right = 0, len(A) - 1
while left < right:
mid = (left + right) // 2
if A[(mid] > A[right]:
Minimum must be in A[mid + 1:right + 1].
left = mid + 1
else: # A[mid] < A[right].
Minimum cannot be in A[mid + 1:right + 1] so it must be in A[left:mid + 1].
right = mid
Loop ends when left == right.
return left

The time complexity is the same as that of binary search, namely O(log n).

147

Note that this problem cannot, in general, be solved in less than linear time when elements may
be repeated. For example, if A consists of n — 1 1s and a single 0, that 0 cannot be detected in the
worst-case without inspecting every element.

Variant: A sequence is strictly ascending if each element is greater than its predecessor. Suppose it
is known that an array A consists of a strictly ascending sequence followed by a strictly descending
sequence. Design an algorithm for finding the maximum element in A.

Variant: Design an O(log n) algorithm for finding the position of an element k in a cyclically sorted
array of distinct elements.

11.4 COMPUTE THE INTEGER SQUARE ROOT

Write a program which takes a nonnegative integer and returns the largest integer whose square is
less than or equal to the given integer. For example, if the input is 16, return 4; if the input is 300,
return 17, since 172 = 289 < 300 and 18” = 324 > 300.

Hint: Look out for a corner-case.

Solution: A brute-force approach is to square each number from 1 to the key, k, stopping as soon
as we exceed k. The time complexity is O(k). For a 32 bit integer, this algorithm may take over one
billion iterations.

Looking more carefully at the problem, it should be clear that it is wasteful to take unit-sized
increments. For example, if x* < k, then no number smaller than x can be the result, and if x* > k,
then no number greater than or equal to x can be the result.

This ability to eliminate large sets of possibilities is suggestive of binary search. Specifically, we
can maintain an interval consisting of values whose squares are unclassified with respect to k, i.e.,
might be less than or greater than k.

We initialize the interval to [0, k]. We compare the square of m = |(I + r)/2] with k, and use the
elimination rule to update the interval. If m? < k, we know all integers less than or equal to m have
a square less than or equal to k. Therefore, we update the interval to [m + 1,7]. If m? > k, we know
all numbers greater than or equal to m have a square greater than k, so we update the candidate
interval to [I,m — 1]. The algorithm terminates when the interval is empty, in which case every
number less than ! has a square less than or equal to k and I’s square is greater than k, so the result
isl—1.

For example, if k = 21, we initialize the interval to [0,21]. The midpoint m = |(0 + 21)/2] = 10;
since 10> > 21, we update the interval to [0,9]. Now m = [(0 + 9)/2] = 4; since 4? < 21, we update
the interval to [5,9]. Now m = [(5 + 8)/2] = 7; since 72 > 21, we update the interval to [5,6]. Now
m = |(5 + 6)/2] = 5; since 5* > 21, we update the interval to [5,4]. Now the right endpoint is less
than the left endpoint, i.e., the interval is empty, so the result is 5—1 = 4, which is the value returned.

For k = 25, the sequence of intervals is [0,25],[0,11],[6,11],[6,7],[6,5]. The returned value is
6-1=5.
def square_root(k):

left, right = 0, k
Candidate interval [left, right] where everything before left has square

<= k, everything after right has square > k.
while left <= right:

148

mid = (left + right) // 2
mid_squared = mid * mid
if mid_squared <= k:
left = mid + 1
else:
right = mid - 1
return left - 1

The time complexity is that of binary search over the interval [0, k], i.e., O(log k).

11.5 COMPUTE THE REAL SQUARE ROOT

Square root computations can be implemented using sophisticated numerical techniques involving
iterative methods and logarithms. However, if you were asked to implement a square root function,
you would not be expected to know these techniques.

Implement a function which takes as input a floating point value and returns its square root.

Hint: Iteratively compute a sequence of intervals, each contained in the previous interval, that contain the

result.

Solution: Let x be the input. One approach is to find an integer 7 such that n? < xand (n + 1)? > x,
using, for example, the approach in Solution 11.4 on the preceding page. We can then search within
[n,n + 1] to find the square root of x to any specified tolerance.

We can avoid decomposing the computation into an integer computation followed by a floating
point computation by directly performing binary search. The reason is that if a number is too big
to be the square root of x, then any number bigger than that number can be eliminated. Similarly,
if a number is too small to be the square root of x, then any number smaller than that number can
be eliminated.

Trivial choices for the initial lower bound and upper bound are 0 and the largest floating point
number that is representable. The problem with this is that it does not play well with finite precision
arithmetic—the first midpoint itself will overflow on squaring.

We cannot start with [0, x] because the square root may be larger than x, e.g., Vi/4 = 1)2.
However, if x > 1.0, we can tighten the lower and upper bounds to 1.0 and x, respectively, since
if 1.0 < x then x < x2. On the other hand, if x < 1.0, we can use x and 1.0 as the lower and upper
bounds respectively, since then the square root of x is greater than x but less than 1.0. Note that
the floating point square root problem differs in a fundamental way from the integer square root
(Problem 11.4 on the facing page). In that problem, the initial interval containing the solution is
always [0, x].
2ot sanarerooniors U

Decides the search range according to x's value relative to 1.0.
left, right = (x, 1.0) if x < 1.0 else (1.0, x)

Keeps searching as long as left != right.
while not math.isclose(left, right):
mid = 0.5 * (left + right)
mid_squared = mid * mid
if mid_squared > x:
right = mid

149

else:
left = mid
return left

The time complexity is O(log), where s is the tolerance.

Variant: Given two positive floating point numbers x and y, how would you compute J to within a
specified tolerance e if the division operator cannot be used? You cannot use any library functions,
such as log and exp; addition and multiplication are acceptable.

Generalized search

Now we consider a number of search problems that do not use the binary search principle. For
example, they focus on tradeoffs between RAM and computation time, avoid wasted comparisons
when searching for the minimum and maximum simultaneously, use randomization to perform
elimination efficiently, use bit-level manipulations to identify missing elements, etc.

11.6 SeaRcH IN A 2D SORTED ARRAY

Call a 2D array sorted if its rows and its columns are nondecreasing. See Figure 11.3 for an example
of a 2D sorted array.

o C1 C2 C3 C4
RO A1 2 4 4 6
R1 1 5 5A9 217:
R2 3 6 6 9 22
RS 3 6 8 10 24
Rt 6 8 9 12 25
R5§8.‘10,12A13 20

Figure 11.3: A 2D sorted array.

Design an algorithm that takes a 2D sorted array and a number and checks whether that number
appears in the array. For example, if the input is the 2D sorted array in Figure 11.3, and the number
is 7, your algorithm should return false; if the number is 8, your algorithm should return true.

Hint: Can you eliminate a row or a column per comparison?

Solution: Let the 2D array be A and the input number be x. We can perform binary search on each
row independently, which has a time complexity O(m log n), where m is the number of rows and n
is the number of columns. (If searching on columns, the time complexity is O(n logm).)

Note that the above approach fails to take advantage of the fact that both rows and columns are
sorted—it treats separate rows independently of each other. For example, if x < A[0][0] then no row
or column can contain x—the sortedness property guarantees that A[0][0] is the smallest element
in A.

150

However, if x > A[0][0], we cannot eliminate the first row or the first column of A. Searching
along both rows and columns will lead to a O(mn) solution, which is far worse than the previous
solution. The same problem arises if x < A[m - 1][n - 1].

A good rule of design is to look at extremal cases. We have already seen that there is nothing to
be gained by comparing with A[0][0] and A[m — 1][n — 1]. However, there are some more extremal
cases. For example, suppose we compare x with A[0][n — 1]. If x = A[0][n — 1], we have found the
desired value. Otherwise:

e x > A[0][n — 1], in which case x is greater than all elements in Row 0.

o x < A[0][n — 1], in which case x is less than all elements in Column n — 1.

In either case, we have a 2D array with one fewer row or column to search. The other extremal case,
namely comparing with A[m — 1][0] yields a very similar algorithm.

CoO C1 C2 C3 (4 C0 C1 C C3 (4
R1 1'“ SSJ_‘A RIEi 5
R2 366922 R2.3h 6
R3 3.6“8,.10:24”2 R3‘3Af‘6-
R4 6‘8.9:‘.12:253 R4§‘6 8‘9 12 25
R5 8, 10”12,13;405 R5‘8A410>12 13 40
(a) Search for 7 (not p.resem) (b) Séarch for 8 (present)

Figure 11.4: Sample searches in a 2D array.

In Figure 11.4(a), we show how the algorithm proceeds when the input number is 7. It compares
the top-right entry, A[0][4] = 6 with 7. Since 7 > 6, we know 7 cannot be present in Row 0. Now
we compare with A[1][4] = 21. Since 7 < 21, we know 7 cannot be present in Column 4. Now
we compare with A[1][3] = 9. Since 7 < 9, we know 7 cannot be present in Column 3. Now we
compare with A[1][2] = 5. Since 7 > 5, we know 7 cannot be present in Row 1. Now we compare
with A[2][2] = 6. Since 7 > 6, we know 7 cannot be present in Row 2. Now we compare with
A[3][2] = 8. Since 7 < 8, we know 7 cannot be present in Column 2. Now we compare with
A[3][1] = 6. Since 7 > 6, we know 7 cannot be present in Row 3. Now we compare with A[4][1] = 8.
Since 7 < 8, we know 7 cannot be present in Column 1. Now we compare with A[4][0] = 6. Since
7 > 6, we know 7 cannot be present in Row 4. Now we compare with A[5][0] = 8. Since 7 < 8, we
know 7 cannot be present in Column 0. There are no remaining entries, so we return false.

In Figure 11.4(b), we show how the algorithm proceeds when the input number is 8. We
eliminate Row 0, then Column 4, then Column 3, then Row 1, then Row 2. When we compare with
A[3][2] we have a match so we return true.
def matrix_search(a, x):

row, col = 0, len(A[0]) - 1 # Start from the top-right corner.
Keeps searching while there are unclassified rows and columns.

while row < len(A) and col >= 0:
if A[frow][col] == x:

151

return True
elif A[{row][col] < x:
row += 1 # Eliminate this row.
else: # A[row][col] > x.
col -= 1 # Eliminate this column.
return False

In each iteration, we remove a row or a column, which means we inspect at most m + n — 1 elements,
yielding an O(m + n) time complexity.

11.7 FIND THE MIN AND MAX SIMULTANEOUSLY

Given an array of comparable objects, you can find either the min or the max of the elements in the
array with n — 1 comparisons, where 7 is the length of the array.

Comparing elements may be expensive, e.g., a comparison may involve a number of nested
calls or the elements being compared may be long strings. Therefore, it is natural to ask if both the
min and the max can be computed with less than the 2(n — 1) comparisons required to compute the
min and the max independently.

Design an algorithm to find the min and max elements in an array. For example, if A = (3,2,5,1,2,4),
you should return 1 for the min and 5 for the max.

Hint: Use the fact thata < b and b < ¢ implies a < c to reduce the number of compares used by the brute-force
approach.

Solution: The brute-force approach is to compute the min and the max independently, i.e., with
2(n — 1) comparisons. We can reduce the number of comparisons by 1 by first computing the min
and then skipping the comparison with it when computing the max.

One way to think of this problem is that we are searching for the strongest and weakest players
in a group of players, assuming players are totally ordered. There is no point in looking at any
player who won a game when we want to find the weakest player. The better approach is to play
n/2 matches between disjoint pairs of players. The strongest player will come from the n/2 winners
and the weakest player will come from the n/2 losers.

Following the above analogy, we partition the array into min candidates and max candidates
by comparing successive pairs—this will give us n/2 candidates for min and n/2 candidates for
max at the cost of n/2 comparisons. It takes /2 — 1 comparisons to find the min from the min
candidates and n/2 — 1 comparisons to find the max from the max candidates, yielding a total of
3n/2 — 2 comparisons.

Naively implemented, the above algorithm need O(n) storage. However, we can implement it
in streaming fashion, by maintaining candidate min and max as we process successive pairs. Note
that this entails three comparisons for each pair.

For the given example, we begin by comparing 3 and 2. Since 3 > 2, we set min to 2 and max to
3. Next we compare 5 and 1. Since 5 > 1, we compare 5 with the current max, namely 3, and update
max to 5. We compare 1 with the current min, namely 2, and update min to 1. Then we compare 2
and 4. Since 4 > 2, we compare 4 with the current max, namely 5. Since 4 < 5, we do not update
max. We compare 2 with the current min, namely 1 Since 2 > 1, we do not update min.

MinMax = collections.namedtuple('MinMax’', (’'smallest’, 'largest’))

152

def find_min_max(A):
def min_max(a, b):
return MinMax(a, b) if a < b else MinMax(b, a)

if len(A) <= 1:
return MinMax(A[0], A[6])

global_min_max = min_max(A[0], A[1])
Process two elements at a time.
for i in range(2, len(A) - 1, 2):
local_min_max = min_max(A[i], A[i + 1])
global_min_max = MinMax(
min(global_min_max.smallest, local_min_max.smallest),
max(global_min_max.largest, local_min_max.largest))
If there is odd number of elements in the array, we still need to
compare the last element with the existing answer.
if len(a) % 2:
global_min_max = MinMax(
min(global_min_max.smallest, A[-1]),
max(global_min_max.largest, A[-1]))
return global_min_max

The time complexity is O(n) and the space complexity is O(1).
Variant: What is the least number of comparisons required to find the min and the max in the
worst-case?

11.8 FIND THE KTH LARGEST ELEMENT

Many algorithms require as a subroutine the computation of the kth largest element of an array. The
first largest element is simply the largest element. The nth largest element is the smallest element,
where 7 is the length of the array.

For example, if the input array A = (3,2,1,5,4), then A[3] is the first largest element in A, A[0]
is the third largest element in A, and A[2] is the fifth largest element in A.

Design an algorithm for computing the kth largest element in an array.
Hint: Use divide and conquer in conjunction with randomization.

Solution: The brute-force approach is to sort the input array A in descending order and return the
element at index k — 1. The time complexity is O(n log n), where n is the length of A.

Sorting is wasteful, since it does more than what is required. For example, if we want the first
largest element, we can compute that with a single iteration, which is O(n).

For general k, we can store a candidate set of k elements in a min-heap, in a fashion analogous to
Solution 10.4 on Page 138, which will yield a O(n log k) time complexity and O(k) space complexity.
This approach is faster than sorting but is not in-place. Additionally, it does more than what’s
required—it computes the k largest elements in sorted order, but all that’s asked for is the kth largest
element.

Conceptually, to focus on the kth largest element in-place without completely sorting the array
we can select an element at random (the “pivot”), and partition the remaining entries into those

153

greater than the pivot and those less than the pivot. (Since the problem states all elements are
distinct, there cannot be any other elements equal to the pivot.) If there are exactly k — 1 elements
greater than the pivot, the pivot must be the kth largest element. If there are more than k—1 elements
greater than the pivot, we can discard elements less than or equal to the pivot—the k-largest element
must be greater than the pivot. If there are less than k — 1 elements greater than the pivot, we can
discard elements greater than or equal to the pivot.

Intuitively, this is a good approach because on average we reduce by half the number of entries
to be considered.

Implemented naively, this approach requires O(n) additional memory. However, we can avoid
the additional storage by using the array itself to record the partitioning.
The numbering starts from one, i.e., if A = [3, 1, -1, 2]
find_kth_largest(l, A) returns 3, find_kth_largest(2, A) returns 2,
find_kth_largest(3, A) returns 1, and find_kth_largest(4, A) returns -1.
def find_kth_largest(k, A):

def find_kth(comp):
Partition A[left:right + 1] around pivot_idx, returns the new index of

the pivot, new_pivot_idx, after partition. After partitioning,
A[left:new_pivot_idx] contains elements that are greater than the

pivot, and A[new_pivot_idx + 1:right + 1] contains elements that are
less than the pivot.

Note: "less than" is defined by the comp object.

R R R N T T R

Returns the new index of the pivot element after partition.
def partition_around_pivot(left, right, pivot_idx):
pivot_value = A[pivot_idx]
new_pivot_idx = left
A[pivot_idx], A[right] = A[right], A[pivot_idx]
for i in range(left, right):
if comp(A[i], pivot_value):

A[i], A[new_pivot_idx] = A[new_pivot_idx], A[i]

new_pivot_idx += 1
Alright], A[lnew_pivot_idx] = A[new_pivot_idx], A[right]
return new_pivot_idx

left, right = 0, len(A) - 1
while left <= right:
Generates a random integer in [left, right].
pivot_idx = random.randint(left, right)
new_pivot_idx = partition_around_pivot(left, right, pivot_idx)
if new_pivot_idx == k - 1:
return A[new_pivot_idx]
elif new_pivot_idx > k - 1:
right = new_pivot_idx - 1
else: # new_pivot_idx < k - 1.
left = new_pivot_idx + 1

return find_kth(operator.gt)

Since we expect to reduce the number of elements to process by roughly half, the average time
complexity T(n) satisfies T(n) = O(n) + T(n/2). This solves to T(n) = O(n). The space complexity is
O(1). The worst-case time complexity is O(n?), which occurs when the randomly selected pivot is

154

the smallest or largest element in the current subarray. The probability of the worst-case reduces
exponentially with the length of the input array, and the worst-case is a nonissue in practice. For
this reason, the randomize selection algorithm is sometimes said to have almost certain O(n) time

complexity.
Variant: Design an algorithm for finding the median of an array.

Variant: Design an algorithm for finding the kth largest element of A in the presence of duplicates.
The kth largest element is defined to be A[k — 1] after A has been sorted in a stable manner, i.e., if
A[i] = A[j]l and i < j then A[i] must appear before A[]] after stable sorting.

Variant: A number of apartment buildings are coming up on a new street. The postal service
wants to place a single mailbox on the street. Their objective is to minimize the total distance
that residents have to walk to collect their mail each day. (Different buildings may have different
numbers of residents.)

Devise an algorithm that computes where to place the mailbox so as to minimize the total
distance, that residents travel to get to the mailbox. Assume the input is specified as an array of
building objects, where each building object has a field indicating the number of residents in that
building, and a field indicating the building’s distance from the start of the street.

11.9 FinD THE MISSING IP ADDRESS

The storage capacity of hard drives dwarfs that of RAM. This can lead to interesting space-time
trade-offs.

Suppose you were given a file containing roughly one billion IP addresses, each of which is a 32-bit
quantity. How would you programmatically find an IP address that is not in the file? Assume you
have unlimited drive space but only a few megabytes of RAM at your disposal.

Hint: Can you be sure there is an address which is not in the file?

Solution: Since the file can be treated as consisting of 32-bit integers, we can sort the input file
and then iterate through it, searching for a gap between values. The time complexity is O(nlogn),
where 7 is number of entries. Furthermore, to keep the RAM usage low, the sort will have to use
disk as storage, which in practice is very slow.

Note that we cannot just compute the largest entry and add one to it, since if the largest entry
is 255.255.255.255 (the highest possible IP address), adding one to it leads to overflow. The same
holds for the smallest entry. (In practice this would be a good heuristic.)

We could add all the IP addresses in the file to a hash table, and then enumerate IP addresses,
starting with 0.0.0.0, until we find one not in the hash table. This requires a minimum of 4 gigabytes
of RAM to store the data.!

We can reduce the storage requirement by an order of magnitude by using a bit array represen-
tation for the set of all possible IP addresses. Specifically, we allocate an array of 2% bits, initialized
to 0, and write a 1 at each index that corresponds to an IP address in the file. Then we iterate
through the bit array, looking for an entry set to 0. There are 232 » 4 x 10° possible IP addresses, so

LA hash table has additional memory overhead, e.g., the table itself, as well as the next-fields in the collision chains,
which amounts to roughly 6 gigabytes on a 32-bit machine.

155

not all IP addresses appear in the file. The storage is 22/8 bytes, is half a gigabyte. This is still well
in excess of the storage limit.

Since the input is in a file, we can make multiple passes through it. We can use this to narrow
the search down to subsets of the space of all IP addresses as follows. We make a pass through
the file to count the number of IP addresses present whose leading bit is a 1, and the number of IP
addresses whose leading bit is a 0. At least one IP address must exist which is not present in the
file, so at least one of these two counts is below 23!. For example, suppose we have determined
using counting that there must be an IP address which begins with 0 and is absent from the file.
We can focus our attention on IP addresses in the file that begin with 0, and continue the process of
elimination based on the second bit. This entails 32 passes, and uses only two integer-valued count
variables as storage.

Since we have more storage, we can count on groups of bits. Specifically, we can count the
number of IP addresses in the file that begin with 0,1,2, .. .,26 — 1 using an array of 2! integers that
can be represented with 32 bits. For every IP address in the file, we take its 16 MSBs to index into
this array and increment the count of that number. Since the file contains fewer than 22 numbers,
there must be one entry in the array that is less than 2'6. This tells us that there is at least one IP
address which has those upper bits and is not in the file. In the second pass, we can focus only on
the addresses whose leading 16 bits match the one we have found, and use a bit array of size 2!6 to
identify a missing address.
def find_missing_element(stream):

NUM_BUCKET = 1 << 16

counter = [0] * NUM_BUCKET

stream, stream_copy = itertools.tee(stream)
for x in stream:

upper_part_x = x >> 16
counter [upper_part_x] += 1

Look for a bucket that contains less than (1 << 16) elements.
BUCKET_CAPACITY = 1 << 16
candidate_bucket = next(i for i, c in enumerate(counter)

if ¢ < BUCKET_CAPACITY)

Finds all IP addresses in the stream whose first 16 bits are equal to
candidate_bucket.
candidates = [0] * BUCKET_CAPACITY
stream = stream_copy
for x in stream_copy:
upper_part_x = x >> 16
if candidate_bucket == upper_part_x:
Records the presence of 16 LSB of x.
lower_part_x = ((1 << 16) - 1) & x
candidates[lower_part_x] =1

At least one of the LSB combinations is absent, find it.
for i, v in enumerate(candidates):
if v ==
return (candidate_bucket << 16) | i

The storage requirement is dominated by the count array, i.e., 2!¢ integer entries.

156

11.10 FIND THE DUPLICATE AND MISSING ELEMENTS

If an array contains n — 1 integers, each between 0 and n — 1, inclusive, and all numbers in the array
are distinct, then it must be the case that exactly one number between 0 and n — 1 is absent.

We can determine the missing number in O(n) time and O(1) space by computing the sum of the
elements in the array. Since the sum of all the numbers from 0 to n — 1, inclusive, is U 1)" , We can
subtract the sum of the numbers in the array from 52" to get the missing number.

For example, if the array is ¢5,3,0,1,2), thenn = 6. We subtract (5+3+ 0+ 1+ 2) =11 from
@ = 15, and the result, 4, is the missing number.

Similarly, if the array contains 7 + 1 integers, each between 0 and n — 1, inclusive, with exactly
one element appearing twice, the duplicated integer will be equal to the sum of the elements of the

array minus %52".

Alternatlvely, for the first problem, we can compute the missing number by computing the XOR
of all the integers from 0 to n — 1, inclusive, and XORing that with the XOR of all the elements in the
array. Every element in the array, except for the missing element, cancels out with an integer from
the first set. Therefore, the resulting XOR equals the missing element. The same approach works
for the problem of finding the duplicated element. For example, the array (5,3, 0, 1, 2) represented
in binary is {((101), (011);, (000)2, (001)2, (010);). The XOR of these entries is (101);. The XOR of all
numbers from 0 to 5, inclusive, is (001);. The XOR of (101); and (001), is (100); = 4, which is the
missing number.

We now turn to a related, though harder, problem.

You are given an array of n integers, each between 0 and n — 1, inclusive. Exactly one element
appears twice, implying that exactly one number between 0 and n — 1 is missing from the array.
How would you compute the duplicate and missing numbers?

Hint: Consider performing multiple passes through the array.

Solution: A brute-force approach is to use a hash table to store the entries in the array. The number
added twice is the duplicate. After having built the hash table, we can test for the missing element
by iterating through the numbers from 0 to n — 1, inclusive, stopping when a number is not present
in the hash table. The time complexity and space complexity are O(n). We can improve the space
complexity to O(1) by sorting the array, subsequent to which finding duplicate and missing values
is trivial. However, the time complexity increases to O(n log n).

We can improve on the space complexity by focusing on a collective property of the numbers in
the array, rather than the individual numbers. For example, let ¢ be the element appearing twice,

and m be the missing number. The sum of the numbers from 0 to n — 1, inclusive, is ("'21)"
(n—])n

, so the
sum of the elements in the array is exactly == + t — m. This gives us an equation in t and m, but
we need one more independent equation to solve for them.

We could use an equation for the product of the elements in the array, or for the sum of the
squares of the elements in the array. This is not a good idea in practice because it results in very
large integers.

The introduction to this problem showed how to find a missing number from an array of n — 2
distinct numbers between 0 and n — 1 using XOR. Applying the same idea to the current problem,
i.e., computing the XOR of all the numbers from 0 to n — 1, inclusive, and the entries in the array,

yields m @t. This does not seem very helpful at first glance, since we want m and ¢. However, since

157

m # t, there must be some bit in m @ ¢ that is set to 1, i.e., m and ¢ differ in that bit. For example, the
XOR of (01101); and (11100); is (10001). The 1s in the XOR are exactly the bits where (01101), and
(11100); differ.

This fact allows us to focus on a subset of numbers from 0 to n — 1 where we can guarantee
exactly one of m and ¢ is present. Suppose we know m and ¢ differ in the kth bit. We compute the
XOR of the numbers from 0 to n — 1 in which the kth bit is 1, and the entries in the array in which the
kth bit is 1. Let this XOR be h—by the logic described in the problem statement, i must be one of m
or t. We can make another pass through A to determine if h is the duplicate or the missing element.

For example, for the array (5,3,0,3,1,2), the duplicate entry ¢ is 3 and the missing entry m is
4. Represented in binary the array is ((101);, (011)2, (000)2, (011)2, (001)2, (010)2). The XOR of these
entries is (110);. The XOR of the numbers from 0 to 5, inclusive, is (001);. The XOR of (110); and
(001); is (111);. This tells we can focus our attention on entries where the least significant bit is
1. We compute the XOR of all numbers between 0 and 5 in which this bit is 1, i.e., (001)z,(011),,
and (101), and all entries in the array in which this bit is 1, i.e., (101),(011)z,(011);, and (001),.
The XOR of these seven values is (011);. This implies that (011); = 3 is either the missing or the
duplicate entry. Another pass through the array shows that it is the duplicate entry. We can then
find the missing entry by forming the XOR of (011), with all entries in the array, and XORing that
result with the XOR of all numbers from 0 to 5, which yields (100), i.e., 4.
DuplicateAndMissing = collections.namedtuple(’'DuplicateAndMissing’,

('duplicate’, 'missing’))

def find_duplicate_missing(A):
Compute the XOR of all numbers from 6 to [A] - 1 and all entries in A.
miss_XOR_dup = functools.reduce(lambda v, i: v ~ i[0] + i[1],
enumerate(A), 0)

We need to find a bit that’s set to 1 in miss_XOR_dup. Such a bit must
exist if there is a single missing number and a single duplicated number
in A.

The bit-fiddling assignment below sets all of bits in differ_bit
to ® except for the least significant bit in miss_XOR_dup that’'s 1.
differ_bit, miss_or_dup = miss_XOR_dup & (~(miss_XOR_dup - 1)), 0
for i, a in enumerate(A):
Focus on entries and numbers in which the differ_bit-th bit is 1.
if i & differ_bit:
miss_or_dup *= i
if a & differ_bit:
miss_or_dup A= a

#
#
#
#
#
#

miss_or_dup is either the missing value or the duplicated entry.
if miss_or_dup in A:
miss_or_dup is the duplicate.
return DuplicateAndMissing(miss_or_dup, miss_or_dup A miss_XOR_dup)
miss_or_dup is the missing value.
return DuplicateAndMissing(miss_or_dup A miss_XOR_dup, miss_or_dup)

The time complexity is O(n) and the space complexity is O(1).

158

CgAPTER
12
- Hash Tables

The new methods are intended to reduce the amount of space required to
contain the hash-coded information from that associated with conventional
methods. The reduction in space is accomplished by exploiting the possibil-
ity that a small fraction of errors of commission may be tolerable in some
applications.

— “Spaceftime trade-offs in hash coding with allowable errors,”
B. H. BLoom, 1970

A hash table is a data structure used to store keys, optionally, with corresponding values. Inserts,
deletes and lookups run in O(1) time on average.

The underlying idea is to store keys in an array. A key is stored in the array locations (“slots”)
based on its “hash code”. The hash code is an integer computed from the key by a hash function.
If the hash function is chosen well, the objects are distributed uniformly across the array locations.

If two keys map to the same location, a “collision” is said to occur. The standard mechanism to
deal with collisions is to maintain a linked list of objects at each array location. If the hash function
does a good job of spreading objects across the underlying array and take O(1) time to compute, on
average, lookups, insertions, and deletions have O(1 + n/m) time complexity, where n is the number
of objects and m is the length of the array. If the “load” n/m grows large, rehashing can be applied
to the hash table. A new array with a larger number of locations is allocated, and the objects are
moved to the new array. Rehashing is expensive (O(n + m) time) but if it is done infrequently (for
example, whenever the number of entries doubles), its amortized cost is low.

A hash table is qualitatively different from a sorted array—keys do not have to appear in order,
and randomization (specifically, the hash function) plays a central role. Compared to binary search
trees (discussed in Chapter 14), inserting and deleting in a hash table is more efficient (assuming
rehashing is infrequent). One disadvantage of hash tables is the need for a good hash function but
this is rarely an issue in practice. Similarly, rehashing is not a problem outside of realtime systems
and even for such systems, a separate thread can do the rehashing.

A hash function has one hard requirement—equal keys should have equal hash codes. This may
seem obvious, but is easy to get wrong, e.g., by writing a hash function that is based on address
rather than contents, or by including profiling data.

A softer requirement is that the hash function should “spread” keys, i.e., the hash codes for a
subset of objects should be uniformly distributed across the underlying array. In addition, a hash
function should be efficient to compute.

A common mistake with hash tables is that a key that’s present in a hash table will be updated.
The consequence is that a lookup for that key will now fail, even though it’s still in the hash table.
If you have to update a key, first remove it, then update it, and finally, add it back—this ensures it’s
moved to the correct array location. As a rule, you should avoid using mutable objects as keys.

159

Now we illustrate the steps for designing a hash function suitable for strings. First, the hash
function should examine all the characters in the string. It should give a large range of values, and
should not let one character dominate (e.g., if we simply cast characters to integers and multiplied
them, a single 0 would result in a hash code of 0). We would also like a rolling hash function, one in
which if a character is deleted from the front of the string, and another added to the end, the new
hash code can be computed in O(1) time (see Solution 6.13 on Page 80). The following function has
these properties:

def string_hash(s, modulus):
MULT = 997
return functools.reduce(lambda v, c: (v * MULT + ord(c)) % modulus, s, 0)

A hash table is a good data structure to represent a dictionary, i.e., a set of strings. In some

applications, a trie, which is a tree data structure that is used to store a dynamic set of strings, has

computational advantages. Unlike a BST, nodes in the tree do not store a key. Instead, the node’s

position in the tree defines the key which it is associated with.

Hash tables boot camp

We introduce hash tables with two examples—one is an application that benefits from the algorith-
mic advantages of hash tables, and the other illustrates the design of a class that can be used in a
hash table.

An application of hash tables

Anagrams are popular word play puzzles, whereby rearranging letters of one set of words, you
get another set of words. For example, “eleven plus two” is an anagram for “twelve plus one”.
Crossword puzzle enthusiasts and Scrabble players benefit from the ability to view all possible
anagrams of a given set of letters.

Suppose you were asked to write a program that takes as input a set of words and returns groups
of anagrams for those words. Each group must contain at least two words.

For example, if the input is “debitcard”, “elvis”, “silent”, “badcredit”, “lives”, “freedom”,
“listen”, “levis”, “money” then there are three groups of anagrams: (1.) “debitcard”, “badcredit”;
(2.) “elvis”, “lives”, “levis”; (3.) “silent”, “listen”. (Note that “money” does not appear in any group,
since it has no anagrams in the set.)

Let’s begin by considering the problem of testing whether one word is an anagram of another.
Since anagrams do not depend on the ordering of characters in the strings, we can perform the
test by sorting the characters in the string. Two words are anagrams if and only if they result
in equal strings after sorting. For example, sort(“logarithmic”) and sort(“algorithmic”) are both
“acghiilmort”, so “logarithmic” and “algorithmic” are anagrams.

We can form the described grouping of strings by iterating through all strings, and comparing
each string with all other remaining strings. If two strings are anagrams, we do not consider the
second string again. This leads to an O(n?m log m) algorithm, where is the number of strings and
m is the maximum string length.

Looking more carefully at the above computation, note that the key idea is to map strings to
a representative. Given any string, its sorted version can be used as a unique identifier for the
anagram group it belongs to. What we want is a map from a sorted string to the anagrams it

160

corresponds to. Anytime you need to store a set of strings, a hash table is an excellent choice. Our
final algorithm proceeds by adding sort(s) for each string s in the dictionary to a hash table. The
sorted strings are keys, and the values are arrays of the corresponding strings from the original
input.
def find_anagrams(dictionary):
sorted_string_to_anagrams = collections.defaultdict(list)
for s in dictionary:
Sorts the string, uses it as a key, and then appends the original
string as another value into hash table.
sorted_string_to_anagrams[’'’.join(sorted(s))].append(s)

return [
group for group in sorted_string_to_anagrams.values() if len(group) >= 2

]

The computation consists of n calls to sort and n insertions into the hash table. Sorting all the
keys has time complexity O(nmlogm). The insertions add a time complexity of O(nm), yielding
O(nmlog m) time complexity in total.

Variant: Design an O(nm) algorithm for the same problem, assuming strings are made up of lower
case English characters.

Design of a hashable class

Consider a class that represents contacts. For simplicity, assume each contact is a string. Suppose
it is a hard requirement that the individual contacts are to be stored in a list and it’s possible that
the list contains duplicates. Two contacts should be equal if they contain the same set of strings,
regardless of the ordering of the strings within the underlying list. Multiplicity is not important,
i.e., three repetitions of the same contact is the same as a single instance of that contact. In order to
be able to store contacts in a hash table, we first need to explicitly define equality, which we can do
by forming sets from the lists and comparing the sets.

In our context, this implies that the hash function should depend on the strings present, but not
their ordering; it should also consider only one copy if a string appears in duplicate form. It should
be pointed out that the hash function and equals methods below are very inefficient. In practice,
it would be advisable to cache the underlying set and the hash code, remembering to void these
values on updates.

class ContactList:
def __init__(self, names):

[

names is a list of strings.

sy

self.names = names

def __hash__(self):
Conceptually we want to hash the set of names. Since the set type is
mutable, it cannot be hashed. Therefore we use frozenset.
return hash(frozenset(self.names))

def __eq__(self, other):
return set(self.names) == set(other.names)

161

def merge_contact_lists(contacts):

190

contacts is a list of ContactList.

vy

return list(set(contacts))

The time complexity of computing the hash is O(n), where n is the number of strings in the
contact list. Hash codes are often cached for performance, with the caveat that the cache must be
cleared if object fields that are referenced by the hash function are updated.

Hash tables have the best theoretical and real-world performance for lookup, insert and delete.
Each of these operations has O(1) time complexity. The O(1) time complexity for insertion is for
the average case—a single insert can take O(n) if the hash table has to be resized.

Consider using a hash code as a signature to enhance performance, e.g., to filter out candidates.

Consider using a precomputed lookup table instead of boilerplate if-then code for mappings,
e.g., from character to value, or character to character.

When defining your own type that will be put in a hash table, be sure you understand the
relationship between logical equality and the fields the hash function must inspect. Specifi-
cally, anytime equality is implemented, it is imperative that the correct hash function is also
implemented, otherwise when objects are placed in hash tables, logically equivalent objects may

appear in different buckets, leading to lookups returning false, even when the searched item is
present.

Sometimes you'll need a multimap, i.e., a map that contains multiple values for a single key, or
a bi-directional map. If the language’s standard libraries do not provide the functionality you

need, learn how to implement a multimap using lists as values, or find a third party library
that has a multimap.

Table 12.1: Top Tips for Hash Tables

Know your hash table libraries

There are multiple hash table-based data structures commonly used in Python—set, dict,
collections.defaultdict, and collections.Counter. The difference between set and the other
three is that is set simply stores keys, whereas the others store key-value pairs. All have the
property that they do not allow for duplicate keys, unlike, for example, list.

Inadict, accessing value associated with a key that is not present leads to a KeyError exception.
However, acollections.defaultdict returns the default value of the type that was specified when
the collection was instantiated, e.g., if d = collections.defaultdict(list), thenif k not in d
then d[k] is []. A collections.Counter is used for counting the number of occurrences of keys,
with a number of set-like operations, as illustrated below.
= collections.Céunter(a:B, b;l)
= collections.Counter(a=1, b=2)

add two counters together: «c[x] + d[x], collections.Counter({’'a’: 4, 'b’: 3})
c+d

* AN

162

subtract (keeping only positive counts), collections.Counter({’a’: 2})
c-d

intersection: min(c[x], d[x]), collections.Counter({’a’: 1, 'b’: 1})
cé&d

union: max(c[x], d[x]), collections.Counter({’a’: 3, 'b’: 2})

c | d

The most important operations for set are s.add(42), s.remove(42), s.discard(123),x in s,
aswellass <= t (is sasubsetof t),and s - t (elements in s that are not in t).

The basic operations on the three key-value collections are similar to those on set. One difference
is with iterators—iteration over a key-value collection yields the keys. To iterate over the key-value
pairs, iterate over items(); to iterate over values, use values(). (The keys() method returns an
iterator to the keys.)

Not every type is “hashable”, i.e., can be added to a set or used as a key in a dict. In particular,
mutable containers are not hashable—this is to prevent a client from modifying an object after
adding it to the container, since the lookup will then fail to find it if the slot that the modified object
hashes to is different.

Note that the built-in hash () function can greatly simplify the implementation of a hash function
for a user-defined class, i.e., implementing __hash(self)__.

12.1 TEST FOR PALINDROMIC PERMUTATIONS

A palindrome is a string that reads the same forwards and backwards, e.g., “level”, “rotator”, and
“foobaraboof".

Write a program to test whether the letters forming a string can be permuted to form a palindrome.
For example, “edified” can be permuted to form “deified”.

Hint: Find a simple characterization of strings that can be permuted to form a palindrome.

Solution: A brute-force approach is to compute all permutations of the string, and test each one for
palindromicity. This has a very high time complexity. Examining the approach in more detail, one
thing to note is that if a string begins with say ‘a’, then we only need consider permutations that
end with ‘a’. This observation can be used to prune the permutation-based algorithm. However,
a more powerful conclusion is that all characters must occur in pairs for a string to be permutable
into a palindrome, with one exception, if the string is of odd length. For example, for the string
“edified”, which is of odd length (7) there are two ‘e’, two ‘d’s, two ‘i’s, and one ‘f’—this is enough
to guarantee that “edified” can be permuted into a palindrome.

More formally, if the string is of even length, a necessary and sufficient condition for it to be a
palindrome is that each character in the string appears an even number of times. If the length is
odd, all but one character should appear an even number of times. Both these cases are covered by
testing that at most one character appears an odd number of times, which can be checked using a
hash table mapping characters to frequencies.
def can_form_palindrome(s):

A string can be permuted to form a palindrome if and only if the number
of chars whose frequencies is odd is at most 1.
return sum(v % 2 for v in collections.Counter(s).values()) <=1

163

The time complexity is O(n), where n is the length of the string. The space complexity is O(c), where
c is the number of distinct characters appearing in the string.

12.2 Is AN ANONYMOUS LETTER CONSTRUCTIBLE?

Write a program which takes text for an anonymous letter and text for a magazine and determines
if it is possible to write the anonymous letter using the magazine. The anonymous letter can be
written using the magazine if for each character in the anonymous letter, the number of times it
appears in the anonymous letter is no more than the number of times it appears in the magazine.

Hint: Count the number of distinct characters appearing in the letter.

Solution: A brute force approach is to count for each character in the character set the number of
times it appears in the letter and in the magazine. If any character occurs more often in the letter
than the magazine we return false, otherwise we return true. This approach is potentially slow
because it iterates over all characters, including those that do not occur in the letter or magazine.
It also makes multiple passes over both the letter and the magazine—as many passes as there are
characters in the character set.

A better approach is to make a single pass over the letter, storing the character counts for the
letter in a single hash table—keys are characters, and values are the number of times that character
appears. Next, we make a pass over the magazine. When processing a character c, if c appears in
the hash table, we reduce its count by 1; we remove it from the hash when its count goes to zero. If
the hash becomes empty, we return true. If we reach the end of the letter and the hash is nonempty,
we return false—each of the characters remaining in the hash occurs more times in the letter than
the magazine.

def is_letter_constructible_from_magazine(letter_text, magazine_text):
Compute the frequencies for all chars in letter_text.
char_frequency_for_letter = collections.Counter(letter_text)

Checks if characters in magazine_text can cover characters in
char_frequency_for_letter.
for ¢ in magazine_text:
if ¢ in char_frequency_for_letter:
char_frequency_for_letter[c] -= 1
if char_frequency_for_letter[c] ==
del char_frequency_for_letter[c]
if not char_frequency_for_letter:
All characters for letter_text are matched.
return True

Empty char_frequency_for_letter means every char in letter_text can be
covered by a character in magazine_text.
return not char_frequency_for_letter

Pythonic solution that exploits collections.Counter. Note that the

subtraction only keeps keys with positive counts.

def is_letter_constructible_from_magazine_pythonic(letter_text, magazine_text):
return (not collections.Counter(letter_text) -

164

collections.Counter (magazine_text))
In the worst-case, the letter is not constructible or the last character of the magazine is essentially
required. Therefore, the time complexity is O(m + n) where m and n are the number of characters in

the letter and magazine, respectively. The space complexity is the size of the hash table constructed
in the pass over the letter, i.e., O(L), where L is the number of distinct characters appearing in the
letter.

If the characters are coded in ASCII, we could do away with the hash table and use a 256 entry

integer array A, with A[i] being set to the number of times the character i appears in the letter.

12.3 IMPLEMENT AN ISBN CACHE

The International Standard Book Number (ISBN) is a unique commercial book identifier. It is a
string of length 10. The first 9 characters are digits; the last character is a check character. The check
character is the sum of the first 9 digits, mod 11, with 10 represented by ‘X’. (Modern ISBNs use
13 digits, and the check digit is taken mod 10; this problem is concerned with 10-digit ISBNs.)

Create a cache for looking up prices of books identified by their ISBN. You implement lookup,
insert, and remove methods. Use the Least Recently Used (LRU) policy for cache eviction. If an
ISBN is already present, insert should not change the price, but it should update that entry to be the
most recently used entry. Lookup should also update that entry to be the most recently used entry.

Hint: Amortize the cost of deletion. Alternatively, use an auxiliary data structure.

Solution: Hash tables are ideally suited for fast lookups. We can use a hash table to quickly lookup
price by using ISBNs as keys. Along with each key, we store a value, which is the price and the
most recent time a lookup was done on that key.

This yields O(1) lookup times on cache hits. Inserts into the cache are also O(1) time, until the
cache is full. Once the cache fills up, to add a new entry we have to find the LRU entry, which will
be evicted to make place for the new entry. Finding this entry takes O(n) time, where n is the cache
size.

One way to improve performance is to use lazy garbage collection. Specifically, let’s say we
want the cache to be of size n. We do not delete any entries from the hash table until it grows to
2n entries. At this point we iterate through the entire hash table, and find the median age of items.
Subsequently we discard everything below the median. The worst-case time to delete becomes
O(n) but it will happen at most once every n operations. Therefore, the amortized time to delete is
O(1). The drawback of this approach is the O(n) time needed for some lookups that miss on a full
cache, and the O(n) increase in memory.

An alternative is to maintain a separate queue of keys. In the hash table we store for each key
a reference to its location in the queue. Each time an ISBN is looked up and is found in the hash
table, it is moved to the front of the queue. (This requires us to use a linked list implementation of
the queue, so that items in the middle of the queue can be moved to the head.) When the length of
the queue exceeds 1, when a new element is added to the cache, the item at the tail of the queue is
deleted from the cache, i.e., from the queue and the hash table.
class LRUCache: -
def __init__(self, capacity):

165

self._isbn_price_table = collections.OrderedDict ()
self._capacity = capacity

def lookup(self, isbn):
if isbn not in self._isbn_price_table:
return -1
price = self._isbn_price_table.pop(isbn)
self._isbn_price_table[isbn] = price
return price

def insert(self, isbn, price):
We add the value for key only if key is not present - we don’t update
existing values.
if isbn in self._isbn_price_table:
price = self._isbn_price_table.pop(isbn)
elif self._capacity <= len(self._isbn_price_table):
self._isbn_price_table.popitem(last=False)
self._isbn_price_table[isbn] = price

def erase(self, isbn):
return self._isbn_price_table.pop(isbn, None) is not None

The time complexity for each lookup is O(1) for the hash table lookup and O(1) for updating the
queue, i.e., O(1) overall.

12.4 Comprute THE LCA, OPTIMIZING FOR CLOSE ANCESTORS

Problem 9.4 on Page 118 is concerned with computing the LCA in a binary tree with parent pointers
in time proportional to the height of the tree. The algorithm presented in Solution 9.4 on Page 118
entails traversing all the way to the root even if the nodes whose LCA is being computed are very
close to their LCA.

Design an algorithm for computing the LCA of two nodes in a binary tree. The algorithm’s time
complexity should depend only on the distance from the nodes to the LCA.

Hint: Focus on the extreme case described in the problem introduction.

Solution: The brute-force approach is to traverse upwards from the one node to the root, recording
the nodes on the search path, and then traversing upwards from the other node, stopping as soon
as we see a node on the path from the first node. The problem with this approach is that if the two
nodes are far from the root, we end up traversing all the way to the root, even if the LCA is the
parent of the two nodes, i.e., they are siblings. This is illustrated in by L and N in Figure 9.1 on
Page 112.

Intuitively, the brute-force approach is suboptimal because it potentially processes nodes well
above the LCA. We can avoid this by alternating moving upwards from the two nodes and storing
the nodes visited as we move up in a hash table. Each time we visit a node we check to see if it has
been visited before.

def lca(node_0, node_1):
iter_0, iter_1 = node_0, node_1
nodes_on_path_to_root = set()

166

while iter_0 or iter_1:
Ascend tree in tandem for these two nodes.
if iter_0:
if iter_0 in nodes_on_path_to_root:
return iter_0
nodes_on_path_to_root.add(iter_0)
iter_® = iter_0.parent
if iter_1:
if iter_1 in nodes_on_path_to_root:
return iter_1
nodes_on_path_to_root.add(iter_1)
iter_1 = iter_1l.parent
raise ValueError(node 0 and node 1 are not in the same tree)

Note that we are tradmg space for time. The algonthm for Solution 9.4 on Page 118 used 0(1) space
and O(h) time, whereas the algorithm presented above uses O(DO + D1) space and time, where DO
is the distance from the LCA to the first node, and D1 is the distance from the LCA to the second
node. In the worst-case, the nodes are leaves whose LCA is the root, and we end up using O(h)
space and time, where h is the height of the tree.

12.5 FIND THE NEAREST REPEATED ENTRIES IN AN ARRAY

People do not like reading text in which a word is used multiple times in a short paragraph. You
are to write a program which helps identify such a problem.

Write a program which takes as input an array and finds the distance between a closest pair of equal
o”, “play”, “makes”, “for”, “no”,
“no”, “fun”, “and”, “no”, “results”), then the second and third occurrences of “no” is the closest

7”4 7”4

entries. For example, if s = (“All”, “work”, “and”, “n work”,
%

pair.
Hint: Each entry in the array is a candidate.

Solution: The brute-force approach is to iterate over all pairs of entries, check if they are the same,
and if so, if the distance between them is less than the smallest such distance seen so far. The time
complexity is O(n?), where n is the array length.

We can improve upon the brute-force algorithm by noting that when examining an entry, we
do not need to look at every other entry—we only care about entries which are the same. We can
store the set of indices corresponding to a given value using a hash table and iterate over all such
sets. However, there is a better approach—when processing an entry, all we care about is the closest
previous equal entry. Specifically, as we scan through the array, for each value seen so far, we store
in a hash table the latest index at which it appears. When processing the element, we use the hash
table to see the latest index less than the current index holding the same value.

For the given example, when processing the element at index 9, which is “no”, the hash table
tells us the most recent previous occurrence of “no” is at index 7, so we update the distance of the
closest palr of equal entries seen so far to 2
def find_nearest repetltlon(paragraph)

word_to_latest_index, nearest_repeated_distance = {}, float(’'inf’)

for i, word in enumerate(paragraph):
if word in word_to_latest_index:

167

latest_equal_word = word_to_latest_index[word]
nearest_repeated_distance = min(nearest_repeated_distance,
i - latest_equal_word)
word_to_latest_index[word] = i
return nearest_repeated_distance if nearest_repeated_distance != float(
'inf’') else -1

The time complexity is O(n), since we perform a constant amount of work per entry. The space
complexity is O(d), where d is the number of distinct entries in the array.

12.6 FIND THE SMALLEST SUBARRAY COVERING ALL VALUES

When you type keywords in a search engine, the search engine will return results, and each result
contains a digest of the web page, i.e., a highlighting within that page of the keywords that you
searched for. For example, a search for the keywords “Union” and “save” on a page with the text
of the Emancipation Proclamation should return the result shown in Figure 12.1.

My paramount object in this struggle is to save the Union, and is not either to save or to
destroy slavery. If I could save the Union without freeing any slave I would do it, and if I
could save it by freeing all the slaves I would do it; and if I could save it by freeing some and
leaving others alone I would also do that.

Figure 12.1: Search result with digest in boldface and search keywords underlined.

The digest for this page is the text in boldface, with the keywords underlined for emphasis. It
is the shortest substring of the page which contains all the keywords in the search. The problem of
computing the digest is abstracted as follows.

Write a program which takes an array of strings and a set of strings, and return the indices of
the starting and ending index of a shortest subarray of the given array that “covers” the set, i.e.,
contains all strings in the set.

Hint: What is the maximum number of minimal subarrays that can cover the query?

Solution: The brute force approach is to iterate over all subarrays, testing if the subarray contains
all strings in the set. If the array length is n, there are O(n?) subarrays. Testing whether the subarray
contains each string in the set is an O(n) operation using a hash table to record which strings are
present in the subarray. The overall time complexity is O(n®).

We can improve the time complexity to O(n?) by growing the subarrays incrementally. Specif-
ically, we can consider all subarrays starting at i in order of increasing length, stopping as soon as
the set is covered. We use a hash table to record which strings in the set remain to be covered. Each
time we increment the subarray length, we need O(1) time to update the set of remaining strings.

We can further improve the algorithm by noting that when we move from i to i + 1 we can reuse
the work performed from i. Specifically, let’s say the smallest subarray starting at i covering the set
ends at j. There is no point in considering subarrays starting at i + 1 and ending before j, since we
know they cannot cover the set. When we advance to i + 1, either we still cover the set, or we have
to advance j to cover the set. We continuously advance one of i or j, which implies an O(n) time
complexity.

168

As a concrete example, consider the array (apple, banana, apple, apple, dog, cat, apple, dog, banana,
apple, cat, dog) and the set {banana, cat}. The smallest subarray covering the set starting at 0 ends at
5. Next, we advance to 1. Since the element at 0 is not in the set, the smallest subarray covering the
set still ends at 5. Next, we advance to 2. Now we do not cover the set, so we advance from 5 to
8—now the subarray from 2 to 8 covers the set. We update the start index from 2 to 3 to 4 to 5 and
continue to cover the set. When we advance to 6, we no longer cover the set, so we advance the end
index till we get to 10. We can advance the start index to 8 and still cover the set. After we move
past 8, we cannot cover the set. The shortest subarray covermg the set is from 8to 10

Subarray = collectlons namedtuple(Subarray , ('start’ end))

def find_smallest_subarray_covering_set(paragraph, keywords):
keywords_to_cover = collections.Counter (keywords)
result = Subarray(-1, -1)
remaining_to_cover = len(keywords)
left = 0
for right, p in enumerate(paragraph):
if p in keywords:

keywords_to_cover([p] -= 1
if keywords_to_cover[p] >= 0:
remaining_to_cover -= 1

Keeps advancing left until keywords_to_cover does not contain all
keywords.
while remaining_to_cover ==
if result == (-1, -1) or right - left < result[1l] - result([0]:
result = (left, right)
pl = paragraph[left]
if pl in keywords:
keywords_to_cover[pl] += 1
if keywords_to_cover[pl] > 0:
remaining_to_cover += 1
left += 1
return result

The complexity is O(n), where n is the length of the array, since for each of the two indices we spend
O(1) time per advance, and each is advanced at most n — 1 times.

The disadvantage of this approach is that we need to keep the subarrays in memory. We can
achieve a streaming algorithm by keeping track of latest occurrences of query keywords as we
process A. We use a doubly linked list L to store the last occurrence (index) of each keyword in Q,
and hash table H to map each keyword in Q to the corresponding node in L. Each time a word
in Q is encountered, we remove its node from L (which we find by using H), create a new node
which records the current index in A, and append the new node to the end of L. We also update
H. By doing this, each keyword in L is ordered by its order in A; therefore, if L has ng words (i.e.,
all keywords are shown) and the current index minus the index stored in the first node in L is less
than current best, we update current best The complex1ty is strll O(n)

def find_ smallest subarray covering_ subset(stream query_ strlngs)
class DoublyLinkedListNode:
def __init__(self, data=None):

169

self.data = data
self.next = self.prev = None

class LinkedList:
def __init__(self):
self.head = self.tail = None
self._size = 0

def __len__(self):
return self._size

def insert_after(self, value):
node = DoublyLinkedListNode(value)
node.prev = self.tail
if self.tail:
self.tail.next = node
else:
self.head = node
self.tail = node
self._size += 1

def remove(self, node):
if node.next:
node.next.prev = node.prev
else:
self.tail = node.prev
if node.prev:
node.prev.next = node.next
else:
self.head = node.next
node.next = node.prev = None
self._size -= 1

Tracks the last occurrence (index) of each string in query_strings.
loc = LinkedList()
d = {s: None for s in query_strings}
result = Subarray(-1, -1)
for idx, s in enumerate(stream):
if s in d: # s is in query_strings.
it = d[s]
if it is not None:
Explicitly remove s so that when we add it, it's the string most
recently added to loc.
loc.remove(it)
loc.insert_after (idx)
d[s] = loc.tail

if len(loc) == len(query_strings):
We have seen all strings in query_strings, let’s get to work.
if (result == (-1, -1)
or idx - loc.head.data < result[1l] - result[0]):
result = (loc.head.data, idx)
return result

170

Variant: Given an array A, find a shortest subarray A[i, j] such that each distinct value present in A
is also present in the subarray.

Variant: Given an array A, rearrange the elements so that the shortest subarray containing all the
distinct values in A has maximum possible length.

Variant: Given an array A and a positive integer k, rearrange the elements so that no two equal
elements are k or less apart.

12.7 FIND SMALLEST SUBARRAY SEQUENTIALLY COVERING ALL VALUES

In Problem 12.6 on Page 168 we did not differentiate between the order in which keywords appeared.
If the digest has to include the keywords in the order in which they appear in the search textbox,
we may get a different digest. For example, for the search keywords “Union” and “save”, in that
order, the digest would be “Union, and is not either to save”.

Write a program that takes two arrays of strings, and return the indices of the starting and ending
index of a shortest subarray of the first array (the “paragraph” array) that “sequentially covers”,
i.e., contains all the strings in the second array (the “keywords” array), in the order in which they
appear in the keywords array. You can assume all keywords are distinct. For example, let the
paragraph array be (apple, banana, cat, apple), and the keywords array be (banana, apple). The
paragraph subarray starting at index 0 and ending at index 1 does not fulfill the specification, even
though it contains all the keywords, since they do not appear in the specified order. On the other
hand, the subarray starting at index 1 and ending at index 3 does fulfill the specification.

Hint: For each index in the paragraph array, compute the shortest subarray ending at that index which fulfills

the specification.

Solution: The brute-force approach is to iterate over all subarrays of the paragraph array. To
check whether a subarray of the paragraph array sequentially covers the keyword array, we search
for the first occurrence of the first keyword. We never need to consider a later occurrence of the
first keyword, since subsequent occurrences do not give us any additional power to cover the
keywords. Next we search for the first occurrence of the second keyword that appears after the first
occurrence of the first keyword. No earlier occurrence of the second keyword is relevant, since those
occurrences can never appear in the correct order. This observation leads to an O(n) time algorithm
for testing whether a subarray fulfills the specification, where n is the length of the paragraph array.
Since there are O(n?) subarrays of the paragraph array, the overall time complexity is O(n®).

The brute-force algorithm repeats work. We can improve the time complexity to O(n?) by
computing for each index, the shortest subarray starting at that index which sequentially covers
the keyword array. The idea is that we can compute the desired subarray by advancing from the
start index and marking off the keywords in order.

The improved algorithm still repeats work—as we advance through the paragraph array, we
can reuse our computation of the earliest occurrences of keywords. To do this, we need auxiliary
data structures to record previous results.

Specifically, we use a hash table to map keywords to their most recent occurrences in the
paragraph array as we iterate through it, and a hash table mapping each keyword to the length of
the shortest subarray ending at the most recent occurrence of that keyword.

171

These two hash tables give us is the ability to determine the shortest subarray sequentially

covering the first k keywords given the shortest subarray sequentially covering the first k — 1
keywords.

When processing the ith string in the paragraph array, if that string is the jth keyword, we
update the most recent occurrence of that keyword to i. The shortest subarray ending at i which
sequentially covers the first j keywords consists of the shortest subarray ending at the most recent
occurrence of the first j — 1 keywords plus the elements from the most recent occurrence of the
(j — 1)th keyword to i. This computation is implemented below.

Subarray = collections.namedtuple(’Subarray’, ('start’, ’'end’))

def find_smallest_sequentially_covering_subset(paragraph, keywords):
Maps each keyword to its index in the keywords array.
keyword_to_idx = {k: i for i, k in enumerate(keywords)}

Since keywords are uniquely identified by their indices in keywords

array, we can use those indices as keys to lookup in an array.
latest_occurrence = [-1] * len(keywords)

For each keyword (identified by its index in keywords array), the length
of the shortest subarray ending at the most recent occurrence of that

keyword that sequentially cover all keywords up to that keyword.
shortest_subarray_length = [float('inf’')] * len(keywords)

shortest_distance = float('inf')
result = Subarray(-1, -1)
for i, p in enumerate(paragraph):
if p in keyword_to_idx:
keyword_idx = keyword_to_idx[p]

if keyword_idx == 0: # First keyword.
shortest_subarray_length[keyword_idx] =1
elif shortest_subarray_length[keyword_idx - 1] != float(’'inf’):
distance_to_previous_keyword = (
i - latest_occurrencel[keyword_idx - 1])
shortest_subarray_length[keyword_idx] = (

distance_to_previous_keyword +
shortest_subarray_length[keyword_idx - 1])
latest_occurrence[keyword_idx] = i

Last keyword, for improved subarray.
if (keyword_idx == len(keywords) - 1
and shortest_subarray_length[-1] < shortest_distance):
shortest_distance = shortest_subarray_length[-1]
result = Subarray(i - shortest_distance + 1, i)
return result

Processing each entry of the paragraph array entails a constant number of lookups and updates,
leading to an O(n) time complexity, where n is the length of the paragraph array. The additional
space complexity is dominated by the three hash tables, i.e,, O(m), where m is the number of
keywords.

172

12.8 FIND THE LONGEST SUBARRAY WITH DISTINCT ENTRIES

Write a program that takes an array and returns the length of a longest subarray with the property
that all its elements are distinct. For example, if the array is (f,s, f,e,t,w,e, n,w,e) then a longest
subarray all of whose elements are distinct is (s, f, e, t, w).

Hint: What should you do if the subarray from indices i to j satisfies the property, but the subarray from i to
j + 1 does not?

Solution: We begin with a brute-force approach. For each subarray, we test if all its elements are
distinct using a hash table. The time complexity is O(n%), where n is the array length since there are
O(n?) subarrays, and their average length is O(n).

We can improve on the brute-force algorithm by noting that if a subarray contains duplicates,
every array containing that subarray will also contain duplicates. Therefore, for any given starting
index, we can compute the longest subarray starting at that index containing no duplicates in time
O(n), since we can incrementally add elements to the hash table of elements from the starting index.
This leads to an O(n?) algorithm. As soon as we get a duplicate, we cannot find a longer beginning
at the same initial index that is duplicate-free.

We can improve the time complexity by reusing previous computation as we iterate through the
array. Suppose we know the longest duplicate-free subarray ending at a given index. The longest
duplicate-free subarray ending at the next index is either the previous subarray appended with the
element at the next index, if that element does not appear in the longest duplicate-free subarray
at the current index. Otherwise it is the subarray beginning at the most recent occurrence of the
element at the next index to the next index. To perform this case analysis as we iterate, all we need
is a hash table storing the most recent occurrence of each element, and the longest duplicate-free
subarray ending at the current element.

For the given example, (f,s, f,e,t,w,e,n, w,e), when we process the element at index 2, the
longest duplicate-free subarray ending at index 1 is from 0 to 1. The hash table tells us that the
element at index 2, namely f, appears in that subarray, so we update the longest subarray ending at
index 2 to being from index 1 to 2. Indices 3-5 introduce fresh elements. Index 6 holds a repeated
value, e, which appears within the longest subarray ending at index 5; specifically, it appears at
index 3. Therefore, the longest subarray ending at index 6 to start at index 4.

def longest_subarray_with_distinct_entries(A):
Records the most recent occurrences of each entry.
most_recent_occurrence = {}
longest_dup_free_subarray_start_idx = result = 0
for i, a in enumerate(A):
Defer updating dup_idx until we see a duplicate.
if a in most_recent_occurrence:
dup_idx = most_recent_occurrencefa]
A[i] appeared before. Did it appear in the longest current
subarray?
if dup_idx >= longest_dup_free_subarray_start_idx:
result = max(result, i - longest_dup_free_subarray_start_idx)

longest_dup_free_subarray_start_idx = dup_idx + 1
most_recent_occurrencefa] = i
return max(result, len(A) - longest_dup_free_subarray_start_idx)

173

The time complexity is O(n), since we perform a constant number of operations per element.

12.9 FIND THE LENGTH OF A LONGEST CONTAINED INTERVAL

Write a program which takes as input a set of integers represented by an array, and returns the size
of a largest subset of integers in the array having the property that if two integers are in the subset,
then so are all integers between them. For example, if the input is (3,-2,7,9,8,1,2,0,-1,5,8), the
largest such subset is {-2, -1, 0,1, 2, 3}, so you should return 6.

Hint: Do you really need a total ordering on the input?

Solution: The brute-force algorithm is to sort the array and then iterate through it, recording for
each entry the largest subset with the desired property ending at that entry.

On closer inspection we see that sorting is not essential to the functioning of the algorithm. We
donot need the total ordering—all we care are about is whether the integers adjacent to a given value
are present. This suggests using a hash table to store the entries. Now we iterate over the entries in
the array. If an entry e is present in the hash table, we compute the largest interval including e such
that all values in the interval are contained in the hash table. We do this by iteratively searching
entries in the hash table of the forme+1,e+2,...,ande—1,e—-2,.... When we are done, to avoid
doing duplicated computation we remove all the entries in the computed interval from the hash
table, since all these entries are in the same largest contained interval.

As a concrete example, consider A = (10,5,3,11,6,100,4). We initialize the hash table to
{6,10,3,11,5,100,4}. The first entry in A is 10, and we find the largest interval contained in A
including 10 by expanding from 10 in each direction by doing lookups in the hash table. The largest
set is {10,11} and is of size 2. This computation updates the hash table to {6,3,5,100,4}. The next
entry in A is 5. Since it is contained in the hash table, we know that the largest interval contained in
A including 5 has not been computed yet. Expanding from 5, we see that 3,4, 6 are all in the hash
table, and 2 and 7 are not in the hash table, so the largest set containing 5 is {3, 4, 5, 6}, which is of
size 4. We update the hash table to {100}. The three entries after 5, namely 3, 11, 6 are not present in
the hash table, so we know we have already computed the longest intervals in A containing each of
these. Then we get to 100, which cannot be extended, so the largest set containing it is {100}, which
is of size 1. We update the hash table to {}. Since 4 is not in the hash table, we can skip it. The largest
of the three sets is {3, 4, 5, 6}, i.e., the size of the largest contained interval is 4.
def longest_contained_range(A):

unprocessed_entries records the existence of each entry in A.
unprocessed_entries = set(A)

max_interval_size = 0
while unprocessed_entries:
a = unprocessed_entries.pop()

Finds the lower bound of the largest range containing a.
lower_bound = a - 1
while lower_bound in unprocessed_entries:
unprocessed_entries.remove (lower_bound)
lower_bound -= 1

174

Finds the upper bound of the largest range containing a.
upper_bound = a + 1
while upper_bound in unprocessed_entries:
unprocessed_entries.remove (upper_bound)
upper_bound += 1

max_interval_size = max(max_interval_size,
upper_bound - lower_bound - 1)
return max_interval_size

The time complexity of this approach is O(n), where n is the array length, since we add and remove
array elements in the hash table no more than once.

12.10 COMPUTE ALL STRING DECOMPOSITIONS

This problem is concerned with taking a string (the “sentence” string) and a set of strings (the
“words”), and finding the substrings of the sentence which are the concatenation of all the words
(in any order). For example, if the sentence string is “amanaplanacanal” and the set of words
apl”,“ana”}, “aplanacan” is a substring of the sentence that is the concatenation of all

i

is {“can”,
words.

Write a program which takes as input a string (the “sentence”) and an array of strings (the “words”),
and returns the starting indices of substrings of the sentence string which are the concatenation
of all the strings in the words array. Each string must appear exactly once, and their ordering is
immaterial. Assume all strings in the words array have equal length. It is possible for the words
array to contain duplicates.

Hint: Exploit the fact that the words have the same length.

Solution: Let’s begin by considering the problem of checking whether a string is the concatenation
strings in words. We can solve this problem recursively—we find a string from words that is a
prefix of the given string, and recurse with the remaining words and the remaining suffix.

When all strings in words have equal length, say #, only one distinct string in words can be a
prefix of the given string. So we can directly check the first n characters of the string to see if they
are in words. If not, the string cannot be the concatenation of words. If it is, we remove that string
from words and continue with the remainder of the string and the remaining words.

To find substrings in the sentence string that are the concatenation of the strings in words, we
can use the above process for each index in the sentence as the starting index.
def find_all_substrings(s, words):

def match_all_words_in_dict(start):
curr_string_to_freq = collections.Counter()
for i in range(start, start + len(words) * unit_size, unit_size):
curr_word = s[i:i + unit_size]
it = word_to_freq[curr_word]
if it == @:
return False
curr_string_to_freq[curr_word] += 1
if curr_string_to_freq[curr_word] > it:
curr_word occurs too many times for a match to be possible.

175

return False
return True

word_to_freq = collections.Counter(words)

unit_size = len(words[®])

return [
i for i in range(len(s) - unit_size * len(words) + 1)
if match_all_words_in_dict(i)

]

We analyze the time complexity as follows. Let m be the number of words and n the length of
each word. Let N be the length of the sentence. For any fixed i, to check if the string of length nm
starting at an offset of i in the sentence is the concatenation of all words has time complexity O(nm),
assuming a hash table is used to store the set of words. This implies the overall time complexity is
O(Nnm). In practice, the individual checks are likely to be much faster because we can stop as soon
as a mismatch is detected.

The problem is made easier, complexity-wise and implementation-wise, by the fact that the
words are all the same length—it makes testing if a substring equals the concatenation of words
straightforward.

12.11 TesTt THE COLLATZ CONJECTURE

The Collatz conjecture is the following: Take any natural number. If it is odd, triple it and add one;
if it is even, halve it. Repeat the process indefinitely. No matter what number you begin with, you
will eventually arrive at 1.

As an example, if we start with 11 we get the sequence 11, 34, 17,52, 26, 13, 40, 20, 10, 5, 16, 8,4, 2, 1.
Despite intense efforts, the Collatz conjecture has not been proved or disproved.

Suppose you were given the task of checking the Collatz conjecture for the first billion integers.
A direct approach would be to compute the convergence sequence for each number in this set.

Test the Collatz conjecture for the first n positive integers.
Hint: How would you efficiently check the conjecture for n assuming it holds for all m < n?

Solution: Often interview questions are open-ended with no definite good solution—all you can
do is provide a good heuristic and code it well.

The Collatz hypothesis can fail in two ways—a sequence returns to a previous number in the
sequence, which implies it will loop forever, or a sequence goes to infinity. The latter cannot be
tested with a fixed integer word length, so we simply flag overflows.

The general idea is to iterate through all numbers and for each number repeatedly apply the
rules till you reach 1. Here are some of the ideas that you can try to accelerate the check:

e Reuse computation by storing all the numbers you have already proved to converge to 1; that

way, as soon as you reach such a number, you can assume it would reach 1.

¢ Tosave time, skip even numbers (since they are immediately halved, and the resulting number

must have already been checked).

¢ If you have tested every number up to k, you can stop the chain as soon as you reach a number

that is less than or equal to k. You do not need to store the numbers below k in the hash table.

176

o If multiplication and division are expensive, use bit shifting and addition.
e Partition the search set and use many computers in parallel to explore the subsets, as show in

Solution 19.9 on Page 299.
Since the numbers in a sequence may grow beyond 32 bits, you should use 64-bit integer and keep
testing for overflow; alternately, you can use arbitrary precision integers.
def test_collatz_conjecture(n):
Stores odd numbers already tested to converge to 1.
verified_numbers = set()

Starts from 3, hypothesis holds trivially for 1.
for i in range(3, n + 1):
sequence = set()
test_i = i
while test_i >= i:
if test_i in sequence:
We previously encountered test_i, so the Collatz sequence has
fallen into a loop. This disproves the hypothesis, so we
short-circuit, returning False.
return False
sequence.add(test_i)

if test_i % 2: # 0dd number.
if test_i in verified_numbers:
break # test_i has already been verified to converge to 1.
verified_numbers.add(test_i)
test_i = 3 * test_i + 1 # Multiply by 3 and add 1.
else:
test_i //= 2 # Even number, halve it.
return True

We cannot say much about time complexity beyond the obvious, namely that it is at least propor-
tional to n.

12.12 IMPLEMENT A HASH FUNCTION FOR CHESS

The state of a game of chess is determined by what piece is present on each square, as illustrated in
Figure 12.2 on the following page. Each square may be empty, or have one of six classes of pieces;
each piece may be black or white. Thus [log(1 + 6 X 2)] = 4 bits suffice per square, which means that
a total of 64 x 4 = 256 bits can represent the state of the chessboard. (The actual state of the game is
slightly more complex, as it needs to capture which side is to move, castling rights, en passant, etc.,
but we will use the simpler model for this question.)

Chess playing computers need to store sets of states, e.g., to determine if a particular state has
been evaluated before, or is known to be a winning state. To reduce storage, it is natural to apply
a hash function to the 256 bits of state, and ignore collisions. The hash code can be computed by
a conventional hash function for strings. However, since the computer repeatedly explores nearby
states, it is advantageous to consider hash functions that can be efficiently computed based on
incremental changes to the board.

Design a hash function for chess game states. Your function should take a state and the hash code
for that state, and a move, and efficiently compute the hash code for the updated state.

177

N W A OO0 N

1. £3, 5 2. g4, Wh4

Figure 12.2: Chessboard corresponding to the fastest checkmate, Fool’s Mate.

Hint: XOR is associative, commutative, and fast to compute. Additionally,a®a = 0.

Solution: A straightforward hash function is to treat the board as a sequence of 64 base 13 digits.
There is one digit per square, with the squares numbered from 0 to 63. Each digit encodes the state
of a square: blank, white pawn, white rook,. . . ,white king, black pawn, ..., black king. We use the
hash function Y23, c;p', where c; is the digit in location i, and p is a prime (see on Page 159 for more
details).

Note that this hash function has some ability to be updated incrementally. If, for example, a
black knight taken by a white bishop the new hash code can be computed by subtracting the terms
corresponding to the initial location of the knight and bishop, and adding a term for a blank at the
initial location of the bishop and a term for the bishop at the knight’s original position.

Now we describe a hash function which is much faster to update. It is based on creating a
random 64-bit integer code for each of the 13 states that each of the 64 squares can be in. These
13 x 64 = 832 random codes are constants in the program. The hash code for the state of the
chessboard is the XOR of the code for each location. Updates are very fast—for the example above,
we XOR the code for black knight on i;, white bishop on i;, white bishop on i;, and blank on i,.

Incremental updates to the first hash function entail computing terms like p' which is more
expensive than computing an XOR, which is why the second hash function is preferable. The
maximum number of word-level XORs performed is 4, for a capture or a castling.

As an example, consider a simpler game played on a 2 X 2 board, with at most two pieces, P
and Q present on the board. At most one piece can be present at a board position. Denote the
board positions by (0,0), (0,1), (1,0), and (1,1). We use the following random 7-bit codes for each
individual position:

For (0,0): (1100111), for blank, (1011000), for P, (1100010), for Q.
For (0,1): (1111100); for blank, (1000001); for P, (0001111); for Q.
For (1,0): (1100101), for blank, (1101101); for P, (0011101); for Q.
For (1,1): (0100001), for blank, (0101100); for P, (1001011); for Q.

178

Consider the following state: P is present at (0,0) and Q at (1, 1), with the remaining positions blank.
The hash code for this state is (1011000), & (1111100), & (1100101), & (1001011), = (0001010);. Now
to compute the code for the state where Q moves to (0,1), we XOR the code for the current state
with (1001011), (removes Q from (1, 1)), (0100001), (adds blank at (1, 1)), (1111100), (removes blank

from (0, 1)), and (0001111); (adds Q at (0, 1)). Note that, regardless of the size of the board and the
number of pieces, this approach uses four XORs to get the updated state.

Variant: How can you include castling rights and en passant information in the state?

179

CHAPTER

Sorting

PROBLEM 14 (Meshing). Two monotone sequences S, T, of lengths n, m, respectively, are stored
in two systems of n(p + 1), m(p + 1) consecutive memory locations, respectively: s,s +1,...,s +
np+1)-land t,t+1,...,t + m(p + 1) - 1. ... It is desired to find a monotone permutation R
of the sum [S, T), and place it at the locationsr,r +1,...,r+ (n+ m)(p+ 1) - 1.

— “Planning And Coding Of Problems For An Electronic Computing Instrument,”
H. H. GoLpsTINE AND J. voN NEUMANN, 1948

Sorting—rearranging a collection of items into increasing or decreasing order—is a common prob-
lem in computing. Sorting is used to preprocess the collection to make searching faster (as we saw

with binary search through an array), as well as identify items that are similar (e.g., students are
sorted on test scores).

Naive sorting algorithms run in O(n?) time. A number of sorting algorithms run in O(nlogn)
time—heapsort, merge sort, and quicksort are examples. Each has its advantages and disadvan-
tages: for example, heapsort is in-place but not stable; merge sort is stable but not in-place; quicksort
runs O(n?) time in worst-case. (An in-place sort is one which uses O(1) space; a stable sort is one
where entries which are equal appear in their original order.)

A well-implemented quicksort is usually the best choice for sorting. We briefly outline alterna-
tives that are better in specific circumstances.

For short arrays, e.g., 10 or fewer elements, insertion sort is easier to code and faster than
asymptotically superior sorting algorithms. If every element is known to be at most k places from
its final location, a min-heap can be used to get an O(n log k) algorithm (Solution 10.3 on Page 137).
If there are a small number of distinct keys, e.g., integers in the range [0..255], counting sort, which
records for each element, the number of elements less than it, works well. This count can be kept in
an array (if the largest number is comparable in value to the size of the set being sorted) or a BST,
where the keys are the numbers and the values are their frequencies. If there are many duplicate
keys we can add the keys to a BST, with linked lists for elements which have the same key; the
sorted result can be derived from an in-order traversal of the BST.

Most sorting algorithms are not stable. Merge sort, carefully implemented, can be made stable.
Another solution is to add the index as an integer rank to the keys to break ties.

Most sorting routines are based on a compare function. However, it is also possible to use
numerical attributes directly, e.g., in radix sort.

The heap data structure is discussed in detail in Chapter 10. Briefly, a max-heap (min-heap)
stores keys drawn from an ordered set. It supports O(logn) inserts and O(1) time lookup for the
maximum (minimum) element; the maximum (minimum) key can be deleted in O(logn) time.
Heaps can be helpful in sorting problems, as illustrated by Problems 10.1 on Page 134, 10.2 on
Page 135, and 10.3 on Page 136.

180

Sorting boot camp

It’s important to know how to use effectively the sort functionality provided by your language’s
library. Let’s say we are given a student class that implements a compare method that compares
students by name. Then by default, the array sort library routine will sort by name. To sort an array
of students by GPA, we have to exphc1tly spec1fy the compare functlon to the sort routine.

class Student(object)
def __init__(self, name, grade_point_average):
self.name = name
self.grade_point_average = grade_point_average

def __1t__(self, other):
return self.name < other.name

students = [
Student(’'A’, 4.0),
Student('C’, 3.0),
Student('B’, 2.0),
Student('D’, 3.2)
]

Sort according to __lt__ defined in Student. students remained unchanged.
students_sort_by_name = sorted(students)

Sort students in-place by grade_point_average.
students sort(key lambda student: student. grade polnt average)

The time complexity of any reasonable 11brary sort is O(nlogn) for an array with n entries. Most
library sorting functions are based on quicksort, which has O(1) space complexity.

Sorting problems come in two flavors: (1.) use sorting to make subsequent steps in an algo-
rithm simpler, and (2.) design a custom sorting routine. For the former, it’s fine to use a library
sort function, possibly with a custom comparator. For the latter, use a data structure like a BST,
heap, or array indexed by values.

Certain problems become easier to understand, as well as solve, when the input is sorted. The
most natural reason to sort is if the inputs have a natural ordering, and sorting can be used as
a preprocessing step to speed up searching.

For specialized input, e.g., a very small range of values, or a small number of values, it’s
possible to sort in O(n) time rather than O(n log n) time.

It’s often the case that sorting can be implemented in less space than required by a brute-force
approach.

Sometimes it is not obvious what to sort on, e.g., should a collection of intervals be sorted on
starting points or endpoints? (Problem 13.5 on Page 186)

Table 13.1: Top Tips for Sorting

Know your sorting libraries

To sort a list in-place, use the sort () method; to sort an iterable, use the function sorted().

181

o The sort() method implements a stable in-place sort for list objects. It returns None—
the calling list itself is updated. It takes two arguments, both optional: key=None, and
reverse=False If key is not None, it is assumed to be a function which takes list elements
and maps them to objects which are comparable—this function defines the sort order. For
example, if a=[1, 2, 4, 3, 5, 0, 11, 21, 160] then a.sort(key=lambda x: str(x))
maps integers to strings, and a is updated to [0, 1, 100, 11, 2, 21, 3, 4, 5], ie., the
entries are sorted according to the lexicographical ordering of their string representation. If
reverse is set to True, the sort is in descending order; otherwise it is in ascending order.

e The sorted function takes an iterable and return a new list containing all items from the
iterable in ascending order. The original list is unchanged. For example, b = sorted(a,
key=lambda x: str(x)) leaves a unchanged, and assigns b to [0, 1, 166, 11, 2, 21,
3, 4, 5]. The optional arguments key and reverse work identically to sort.

13.1 COMPUTE THE INTERSECTION OF TWO SORTED ARRAYS

A natural implementation for a search engine is to retrieve documents that match the set of words in
a query by maintaining an inverted index. Each page is assigned an integer identifier, its document-
ID. An inverted index is a mapping that takes a word w and returns a sorted array of page-ids which
contain w—the sort order could be, for example, the page rank in descending order. When a query
contains multiple words, the search engine finds the sorted array for each word and then computes
the intersection of these arrays—these are the pages containing all the words in the query. The most
computationally intensive step of doing this is finding the intersection of the sorted arrays.

Write a program which takes as input two sorted arrays, and returns a new array containing
elements that are present in both of the input arrays. The input arrays may have duplicate entries,
but the returned array should be free of duplicates. For example, the inputis (2,3, 3,5,5,6,7,7,8,12)
and (5,5,6,8,8,9,10,10), your output should be (5, 6, 8).

Hint: Solve the problem if the input array lengths differ by orders of magnitude. What if they are approximately
equal?

Solution: The brute-force algorithm is a “loop join”, i.e., traversing through all the elements of one
array and comparing them to the elements of the other array. Let m and n be the lengths of the two
input arrays.

def intersect_two_sorted_arrays(A, B):
return [a for i, a in enumerate(A) if (i == 6 or a != A[i - 1]) and a in B]
The brute-force algorithm has O(mn) time complexity.
Since both the arrays are sorted, we can make some optimizations. First, we can iterate through

the first array and use binary search in array to test if the element is present in the second array.
def intersect_two_sorted_arrays(A, B):
def is_present(k):
i = bisect.bisect_left(B, k)
return i < len(B) and B[i] ==

return [
a for i, a in enumerate(A)
if (i == 0 or a != A[i - 1]) and is_present(a)

182

The time complexity is O(mlogn), where m is the length of the array being iterated over. We can
further improve our run time by choosing the shorter array for the outer loop since if n is much
smaller than m, then nlog(m) is much smaller than m log(n).

This is the best solution if one set is much smaller than the other. However, it is not the best when
the array lengths are similar because we are not exploiting the fact that both arrays are sorted. We
can achieve linear runtime by simultaneously advancing through the two input arrays in increasing
order. At each iteration, if the array elements differ, the smaller one can be eliminated. If they are
equal, we add that value to the intersection and advance both. (We handle duplicates by comparing
the current element with the previous one.) For example, if the arrays are A = (2,3,3,5,7,11) and
B = (3,3,7,15,31), then we know by inspecting the first element of each that 2 cannot belong to the
intersection, so we advance to the second element of A. Now we have a common element, 3, which
we add to the result, and then we advance in both arrays. Now we are at 3 in both arrays, but we
know 3 has already been added to the result since the previous element in A is also 3. We advance
in both again without adding to the intersection. Comparing 5 to 7, we can eliminate 5 and advance
to the fourth element in A, which is 7, and equal to the element that B’s iterator holds, so it is added
to the result. We then eliminate 11, and since no elements remain in A, we return (3,7).
def intersect_two_sorted_arrays(A, B): V ‘
i, j, intersection_A_B = 0, 0, []
while i < len(A) and j < len(B):

if Afi] == B[j]:
if i == 0 or A[i] !'= A[i - 1]:
intersection_A_B.append(A[i])
i, j=i+1,3+1
elif A[i] < B[jl:

i+=1
else: # A[i] > B[j].
j o+=1

return intersection_A_B

Since we spend O(1) time per input array element, the time complexity for the entire algorithm is
O(m +n).

13.2 MERGE TWO SORTED ARRAYS

Suppose you are given two sorted arrays of integers. If one array has enough empty entries at its
end, it can be used to store the combined entries of the two arrays in sorted order. For example,
consider (5,13,17, ., o, -, ,=) and (3,7, 11, 19), where . denotes an empty entry. Then the combined
sorted entries can be stored in the first array as (3,5,7,11,13,17,19,).

Write a program which takes as input two sorted arrays of integers, and updates the first to the
combined entries of the two arrays in sorted order. Assume the first array has enough empty entries
at its end to hold the result.

Hint: Avoid repeatedly moving entries.

Solution: The challenge in this problem lies in writing the result back into the first array—if we
had a third array to store the result it, we could solve by iterating through the two input arrays in
tandem, writing the smaller of the entries into the result. The time complexity is O(m + n), where m
and n are the number of entries initially in the first and second arrays.

183

We cannot use the above approach with the first array playing the role of the result and still
keep the time complexity O(m + n). The reason is that if an entry in the second array is smaller than
some entry in the first array, we will have to shift that and all subsequent entries in the first array
to the right by 1. In the worst-case, each entry in the second array is smaller than every entry in the
first array, and the time complexity is O(mn).

We do have spare space at the end of the first array. We take advantage of this by filling the
first array from its end. The last element in the result will be written to index m + n — 1. For
example, if A = (5,13,17,.,.,-,.,.) and B = (3,7,11,19), then A is updated in the following man-
ner: (5,13,17,.,.,-,19,.),(5,13,17,.,.,17,19,.), (5,13,17,.,13,17,19, .), (5,13,17,11,13,17,19,),
(51 13/ 7/ 11/ 13/ 17/ 19/ "‘)I <5I 5/ 7I 11/ 13[17/ 19/ "‘)I <3I 5/ 7/ 111 13/ 171 191 ‘-'>'

Note that we will never overwrite an entry in the first array that has not already been processed.
The reason is that even if every entry of the second array is larger than each element of the first
array, all elements of the second array will fill up indices m to m + n — 1 inclusive, which does not
conflict with entries stored in the first array. This idea is implemented in the program below. Note
the resemblance to Solution 6.4 on Page 71, where we also filled values from the end.
def merge_two_sorted_arrays(A, m, é; ;j: - - V o
a, b, write_idx =m -1, n -1, m+n -1
while a >= 0 and b >= 0:

if A[a] > B[b]:
Alwrite_idx] = A[a]
a -=1
else:
Afwrite_idx]
b -=1
write_idx -=1
while b >= 0:
A[write_idx]
write_idx, b

B[b]

B[b]
write_idx - 1, b - 1

The time complexity is O(m + n). It uses O(1) additional space.

13.3 REMOVE FIRST-NAME DUPLICATES

Design an efficient algorithm for removing all first-name duplicates from an array. For exam-
ple, if the input is ((Ian, Botham), (David, Gower), (Ian, Bell), (Ian, Chappell)), one result could be
((Tan, Bell), (David, Gower)); ((David, Gower), (Ian, Botham)) would also be acceptable.

Hint: Bring equal items close together.

Solution: A brute-force approach is to use a hash table. For the names example, we would need a
hash function and an equals function which use the first name only. We first create the hash table
and then iterate over it to write entries to the result array. The time complexity is O(n), where n is
the number of items. The hash table has a worst-case space complexity of O(n).

We can avoid the additional space complexity if we can reuse the input array for storing the
final result. First we sort the array, which brings equal elements together. Sorting can be done in
O(nlogn) time. The subsequent elimination of duplicates takes O(n) time. Note that sorting an
array requires that its elements are comparable.

class Name:

184

def __init__(self, first_name, last_name):
self.first_name, self.last_name = first_name, last_name

def __eq__(self, other):
return self.first_name == other.first_name

def __l1t__(self, other):
return (self.first_name < other.first_name
if self.first_name != other.first_name else
self.last_name < other.last_name)

def eliminate_duplicate(A):
A.sort() # Makes identical elements become neighbors.
write_idx =1
for cand in A[1:]:
if cand != Afwrite_idx - 1]:

Afwrite_idx] = cand

write_idx += 1
del A[write_idx:]

The time complexity is O(nlogn) and the space complexity is O(1).
13.4 SMALLEST NONCONSTRUCTIBLE VALUE

Given a set of coins, there are some amounts of change that you may not be able to make with them,
e.g., you cannot create a change amount greater than the sum of the your coins. For example, if
your coins are 1,1,1,1,1,5, 10, 25, then the smallest value of change which cannot be made is 21.

Write a program which takes an array of positive integers and returns the smallest number which
is not to the sum of a subset of elements of the array.

Hint: Manually solve for a few short arrays.

Solution: A brute-force approach would be to enumerate all possible values, starting from 1, testing
each value to see if it is the sum of array elements. However, there is no simple efficient algorithm
for checking if a given number is the sum of a subset of entries in the array. Heuristics may be
employed, but the program will be unwieldy.

We can get a great deal of insight from some small concrete examples. Observe that (1,2)
produces 1,2, 3, and (1, 3) produces 1,3,4. A trivial observation is that the smallest element in the
array sets a lower bound on the change amount that can be constructed from that array, so if the
array does not contain a 1, it cannot produce 1. However, it may be possible to produce 2 without
a 2 being present, since there can be 2 or more 1s present.

Continuing with a larger example, (1,2,4) produces 1,2,3,4,5,6,7, and (1,2,5) produces
1,2,3,5,6,7,8. Generalizing, suppose a collection of numbers can produce every value up to
and including V, but not V + 1. Now consider the effect of adding a new element u to the collection.
If u < V +1, we can still produce every value up to and including V + u and we cannot produce
V+u+1. Ontheother hand, if u > V +1, then even by adding u to the collection we cannot produce
V+1.

185

Another observation is that the order of the elements within the array makes no difference to
the amounts that are constructible. However, by sorting the array allows us to stop when we reach
a value that is too large to help, since all subsequent values are at least as large as that value.
Specifically, let M[i — 1] be the maximum constructible amount from the first i elements of the sorted
array. If the next array element x is greater than M[i—1]+1, M[i—1] is still the maximum constructible
amount, so we stop and return M[i — 1] + 1 as the result. Otherwise, we set M[i] = M[i — 1] + x and
continue with element (i + 1).

Toillustrate, suppose we are given (12, 2,1, 15,2, 4). This sorts to(1, 2, 2,4, 12, 15). The maximum
constructible amount we can make with the first element is 1. The second element, 2, is less than
or equal to 1 + 1, so we can produce all values up to and including 3 now. The third element, 2,
allows us to produce all values up to and including 5. The fourth element, 4, allows us to produce
all values up to 9. The fifth element, 12 is greater than 9 + 1, so we cannot produce 10. We stop—10
is the smallest number that cannot be constructed.

The code implementing this approach is shown below.

def smallest_nonconstructible_value(A):
max_constructible_value = 0
for a in sorted(A):
if a > max_constructible_value + 1:
break
max_constructible_value += a
return max_constructible_value + 1
The time complexity as a function of n, the length of the array, is O(n log n) to sort and O(n) to iterate,
i.e.,, O(nlogn).

13.5 RENDER A CALENDAR

Consider the problem of designing an online calendaring application. One component of the design
is to render the calendar, i.e., display it visually.

Suppose each day consists of a number of events, where an event is specified as a start time and
a finish time. Individual events for a day are to be rendered as nonoverlapping rectangular regions
whose sides are parallel to the X- and Y-axes. Let the X-axis correspond to time. If an event starts
at time b and ends at time e, the upper and lower sides of its corresponding rectangle must be at b
and e, respectively. Figure 13.1 on the facing page represents a set of events.

Suppose the Y-coordinates for each day’s events must lie between 0 and L (a pre-specified
constant), and each event’s rectangle must have the same “height” (distance between the sides
parallel to the X-axis). Your task is to compute the maximum height an event rectangle can have.
In essence, this is equivalent to the following problem.

Write a program that takes a set of events, and determines the maximum number of events that
take place concurrently.

Hint: Focus on endpoints.

Solution: The number of events scheduled for a given time changes only at times that are start or
end times of an event. This leads the following brute-force algorithm. For each endpoint, compute
the number of events that contain it. The maximum number of concurrent events is the maximum
of this quantity over all endpoints. If there are n intervals, the total number of endpoints is 2n.

186

— [=
E5 4] [E6 } E E7 }
E2 E E4 }
E3 }

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

[

T

E1

T
[y
T
['}
[e}

Figure 13.1: A set of nine events. The earliest starting event begins at time 1; the latest ending event ends at time 17.
The maximum number of concurrent events is 3, e.g., {E1, E5, E8} as well as others.

Computing the number of events containing an endpoint takes O(n) time, since checking whether an
interval contains a point takes O(1) time. Therefore, the overall time complexity is O(2nxn) = O(n?).

The inefficiency in the brute-force algorithm lies in the fact that it does not take advantage of
locality, i.e., as we move from one endpoint to another. Intuitively, we can improve the run time by
sorting the set of all the endpoints in ascending order. (If two endpoints have equal times, and one
is a start time and the other is an end time, the one corresponding to a start time comes first. If both
are start or finish times, we break ties arbitrarily.)

Now as we proceed through endpoints we can incrementally track the number of events taking
place at that endpoint using a counter. For each endpoint that is the start of an interval, we increment
the counter by 1, and for each endpoint that is the end of an interval, we decrement the counter by
1. The maximum value attained by the counter is maximum number of overlapping intervals.

For the example in Figure 13.1, the first seven endpoints are 1(start), 2(start), 4(start), 5(end),
5(end), 6(start), 7(end). The counter values are updated to 1,2, 3,2, 1, 2, 1.

Event is a tuple (start_time, end_time)
Event = collections.namedtuple(’Event’, (’'start’, 'finish’))

Endpoint is a tuple (start_time, ®) or (end_time, 1) so that if times
are equal, start_time comes first
Endpoint = collections.namedtuple(’Endpoint’, (’'time’, 'is_start’))

def find_max_simultaneous_events(A):
Builds an array of all endpoints.
E = ([Endpoint(event.start, True)
for event in A] + [Endpoint(event.finish, False) for event in A])
Sorts the endpoint array according to the time, breaking ties by putting
start times before end times.
E.sort(key=1lambda e: (e.time, not e.is_start))

Track the number of simultaneous events, record the maximum number of
simultaneous events.
max_num_simultaneous_events, num_simultaneous_events = 0, 0
for e in E:
if e.is_start:
num_simultaneous_events += 1
max_num_simultaneous_events = max(num_simultaneous_events,
max_num_simultaneous_events)
else:
num_simultaneous_events -= 1
return max_num_simultaneous_events

187

Sorting the endpoint array takes O(n log n) time; iterating through the sorted array takes O(n) time,
yielding an O(nlogn) time complexity. The space complexity is O(n), which is the size of the
endpoint array.

Variant: Users 1,2,...,n share an Internet connection. User i uses b; bandwidth from time s; to f;,
inclusive. What is the peak bandwidth usage?

13.6 MERGING INTERVALS

Suppose the time during the day that a person is busy is stored as a set of disjoint time intervals. If
an event is added to the person’s calendar, the set of busy times may need to be updated.

In the abstract, we want a way to add an interval to a set of disjoint intervals and rep-
resent the new set as a set of disjoint intervals. For example, if the initial set of inter-
vals is [-4,-1],[0,2],13,6],[7,9],[11,12],[14,17], and the added interval is [1,8], the result is
[-4,-1],[0,9],[11,12], [14,17].

Write a program which takes as input an array of disjoint closed intervals with integer endpoints,
sorted by increasing order of left endpoint, and an interval to be added, and returns the union of
the intervals in the array and the added interval. Your result should be expressed as a union of
disjoint intervals sorted by left endpoint.

Hint: What is the union of two closed intervals?

Solution: A brute-force approach is to find the smallest left endpoint and the largest right endpoint
in the set of intervals in the array and the added interval. We then form the result by testing every
integer between these two values for membership in an interval. The time complexity is O(Dn),
where D is the difference between the two extreme values and # is the number of intervals. Note
that D may be much larger than n. For example, the brute-force approach will iterate over all
integers from 0 to 1000000 if the array is ([0, 1], [999999, 1000000]) and the added interval is [10, 20].

The brute-force approach examines values that are not endpoints, which is wasteful, since if an
integer point p is not an endpoint, it must lie in the same interval as p — 1 does. A better approach
is to focus on endpoints, and use the sorted property to quickly process intervals in the array.

Specifically, processing an interval in the array takes place in three stages:

(1.) First, we iterate through intervals which appear completely before the interval to be added—
all these intervals are added directly to the result.

(2.) As soon as we encounter an interval that intersects the interval to be added, we compute
its union with the interval to be added. This union is itself an interval. We iterate through
subsequent intervals, as long as they intersect with the union we are forming. This single
union is added to the result.

(3.) Finally, we iterate through the remaining intervals. Because the array was originally sorted,
none of these can intersect with the interval to be added, so we add these intervals to the
result.

Suppose the sorted array of intervals is [-4, —1], [0, 2], [3, 6],[7, 9], [11, 12], [14, 17], and the added
interval is [1, 8]. We begin in Stage 1. Interval [-4, —1] does not intersect [1, 8], so we add it directly
to the result. Next we proceed to [0,2]. Since [0, 2] intersects [1, 8], we are now in Stage 2 of the
algorithm. We add the union of the two, [0, 8], to the result. Now we process [3, 6]—it lies completely

188

in [0, 8], so we proceed to [7, 9]. It intersects [1, 8] but is not completely contained in it, so we update
the most recently added interval to the result, [1,8] to [0,9]. Next we proceed to [11,12]. It does
not intersect the most recently added interval to the result, [0,9], so we are in Stage 3. We add it
and all subsequent intervals to the result, which is now [-4,-1],[0, 9], [11,12],[14,17]. Note how
the algorithm operates “locally”—sortedness guarantees that we do not miss any combinations of
intervals.

The program unplementmg this 1dea is g;lven below

Interval collections. namedtuple(Interval' (left 'right’))

def add_interval(disjoint_intervals, new_interval):
i, result =0, []

Processes intervals in disjoint_intervals which come before new_interval.
while (i < len(disjoint_intervals)
and new_interval.left > disjoint_intervals{[i].right):
result.append(disjoint_intervals{i])
i+=1

Processes intervals in disjoint_intervals which overlap with new_interval.
while (i < len(disjoint_intervals)
and new_interval.right >= disjoint_intervals{i].left):
If [a, b] and [c, d] overlap, union is [min(a, c¢), max(b, d)].
new_interval = Interval(
min(new_interval.left, disjoint_intervals[i].left),
max(new_interval.right, disjoint_intervals[i].right))
i+=1
Processes intervals in disjoint_intervals which come after new_interval.
return result + [new 1nterval] + d1s;olnt 1ntervals[1]

Since the program spends O(1) time per entry, its time complex1ty is O(n)

13.7 COMPUTE THE UNION OF INTERVALS

In this problem we consider sets of intervals with integer endpoints; the intervals may be open
or closed at either end. We want to compute the union of the intervals in such sets. A concrete
example is given in Figure 13.2.

[2,4] [8,11) (13,15) (16,17)
e——0 o—o0 o0—o0
[1,1] 3,4 [7.8) (12,16)
° *—o0 *—oO o °
©,3) [5.7) 9.11] [12,14]
——o0 o—o

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4] [5,11] [1217)

L
[
[]
[}
o

Union of intervals

Figure 13.2: A set of intervals and their union.

189

Design an algorithm that takes as input a set of intervals, and outputs their union expressed as a
set of disjoint intervals.

Hint: Do a case analysis.

Solution: The brute-force approach of considering every number from the minimum left endpoint
to the maximum right endpoint described at the start of Solution 13.6 on Page 188 will work for this
problem too. As before, its time complexity is O(Dn), where D is the difference between the two
extreme values and n is the number of intervals, which is unacceptable when D is large.

We can improve the run time by focusing on intervals instead of individual values. We perform
the following iteratively: select an interval arbitrarily, and find all intervals it intersects with. If it
does not intersect any interval, remove it from the set and add it to the result. Otherwise, take its
union with all the intervals it intersects with (the union must itself be an interval), remove it and
all the intervals it intersects with from the result, and add the union to the set. Since we remove at
least one interval from the set each time, and the time to process each interval (test intersection and
form unions) is O(1), the time complexity is O(n?).

A faster implementation of the above approach is to process the intervals in sorted order, so that
we can limit our attention to a subset of intervals as we proceed. Specifically, we begin by sorting
the intervals on their left endpoints. The idea is that this allows us to not have to revisit intervals
which are entirely to the left of the interval currently being processed.

We refer to an interval which does not include its left endpoint as being left-open. Left-closed,
right-open, and right-closed are defined similarly. When sorting, if two intervals have the same left
endpoint, we put intervals which are left-closed first. We break ties arbitrarily.

As we iterate through the sorted array of intervals, we have the following cases:

o The interval most recently added to the result does not intersect the current interval, nor does
its right endpoint equal the left endpoint of the current interval. In this case, we simply add
the current interval to the end of the result array as a new interval.

o The interval most recently added to the result intersects the current interval. In this case, we
update the most recently added interval to the union of it with the current interval.

o The interval most recently added to the result has its right endpoint equal to the left endpoint
of the current interval, and one (or both) of these endpoints are closed. In this case too, we
update the most recently added interval to the union of it with the current interval.

For the example in Figure 13.2 on the preceding page, the result array updates in the following
way: ((0,3)), {(0,4]), (0,41, [5,7)), (0,41, [5,8)), (0, 4], [5,11)), (0, 4], [5, 11]), ((0, 4], [5, 11], [12, 14]),
((0,4],5,11],[12, 16]), ((0,4],5,11], [12,17)).

Endpoint = collections.namedtuple(’Endpoint’, (’'is_closed’, ’'val’))

class Interval:
def __init__(self, left, right):
self.left = left
self.right = right

def __1t__(self, other):
if self.left.val != other.left.val:
return self.left.val < other.left.val
Left endpoints are equal, so now see if one is closed and the other open
- closed intervals should appear first.

190

return self.left.is_closed and not other.left.is_closed

def union_of_intervals(intervals):
Empty input.
if not intervals:
return []

Sort intervals according to left endpoints of intervals.
intervals.sort()
result = [intervals[0]]
for i in intervals:
if intervals and (i.left.val < result[-1].right.val or
(i.left.val == result[-1].right.val and
(i.left.is_closed or result[-1].right.is_closed))):
if (i.right.val > result[-1].right.val or
(i.right.val == result[-1].right.val and i.right.is_closed)):
result[-1].right = i.right
else:
result.append (i)
return result

The time complexity is dominated by the sort step, i.e., O(nlogn).

13.8 PARTITIONING AND SORTING AN ARRAY WITH MANY REPEATED ENTRIES

Suppose you need to reorder the elements of a very large array so that equal elements appear
together. For example, if the array is (b,a,c,b,d,a,b,d) then (a,a,b,b,b,c,d,d) is an acceptable
reordering, as is {d,d, c,a,a,b,b,b).

If the entries are integers, this reordering can be achieved by sorting the array. If the number
of distinct integers is very small relative to the size of the array, an efficient approach to sorting
the array is to count the number of occurrences of each distinct integer and write the appropriate
number of each integer, in sorted order, to the array. When array entries are objects, with multiple
fields, only one of which is to be used as a key, the problem is harder to solve.

You are given an array of student objects. Each student has an integer-valued age field that is to be
treated as a key. Rearrange the elements of the array so that students of equal age appear together.
The order in which different ages appear is not important. How would your solution change if ages
have to appear in sorted order?

Hint: Count the number of students for each age.

Solution: The brute-force approach is to sort the array, comparing on age. If the array length is n,
the time complexity is O(nlogn) and space complexity is O(1). The inefficiency in this approach
stems from the fact that it does more than is required—the specification simply asks for students of
equal age to be adjacent.

We use the approach described in the introduction to the problem. However, we cannot apply
it directly, since we need to write objects, not integers—two students may have the same age but
still be different.

For example, consider the array ((Greg, 14), (John, 12), (Andy, 11), (Jim, 13), (Phil, 12), (Bob, 13),
(Chip, 13), (Tim, 14)). We can iterate through the array and record the number of students of each

191

age in a hash. Specifically, keys are ages, and values are the corresponding counts. For the given
example, on completion of the iteration, the hash is (14,2), (12, 2),(11,1),(13,3). This tells us that
we need to write two students of age 14, two students of age 12, one student of age 11 and three
students of age 13. We can write these students in any order, as long as we keep students of equal
age adjacent.

If we had a new array to write to, we can write the two students of age 14 starting at index 0,
the two students of age 12 starting at index 0 + 2 = 2, the one student of age 11 at index 2 + 2 = 4,
and the three students of age 13 starting at index 4 + 1 = 5. We would iterate through the original
array, and write each entry into the new array according to these offsets. For example, after the first
four iterations, the new array would be {(Greg, 14), ., John, 12), ., (Andy, 11), (Jim, 13), .,).

The time complexity of this approach is O(n), but it entails O(n) additional space for the result
array. We can avoid having to allocate a new array by performing the updates in-place. The idea is
to maintain a subarray for each of the different types of elements. Each subarray marks out entries
which have not yet been assigned elements of that type. We swap elements across these subarrays
to move them to their correct position.

In the program below, we use two hash tables to track the subarrays. One is the starting offset
of the subarray, the other its size. As soon as the subarray becomes empty, we remove it.

Person = collections.namedtuple(’'Person’, (’age’, ’'name’))

def group_by_age(people):
age_to_count = collections.Counter([person.age for person in people])
age_to_offset, offset = {}, ®
for age, count im age_to_count.items():
age_to_offset[age] = offset
offset += count

while age_to_offset:
from_age = next(iter(age_to_offset))
from_idx = age_to_offset[from_age]
to_age = people[from_idx].age
to_idx = age_to_offset[people[from_idx].age]
people[from_idx], people[to_idx] = people[to_idx], people[from_idx]
Use age_to_count to see when we are finished with a particular age.
age_to_count[to_age] -=1
if age_to_count[to_age]:
age_to_offset[to_age] = to_idx + 1
else:
del age_to_offset[to_age]

The time complexity is O(n), since the first pass entails n hash table inserts, and the second pass
spends O(1) time to move one element to its proper location. The additional space complexity is
dictated by the hash table, i.e., O(m), where m is the number of distinct ages.

If the entries are additionally required to appear sorted by age, we can use a BST-based map
(Chapter 14) to map ages to counts, since the BST-based map keeps ages in sorted order. For
our example, the age-count pairs would appear in the order (11,1), (12, 2), (13, 3), (14, 2). The time
complexity becomes O(n + mlogm), since BST insertion takes time O(logm). Such a sort is often
referred to as a counting sort.

192

13.9 Team PHOTO DAY—1

You are a photographer for a soccer meet. You will be taking pictures of pairs of opposing teams.
All teams have the same number of players. A team photo consists of a front row of players and
a back row of players. A player in the back row must be taller than the player in front of him, as
illustrated in Figure 13.3. All players in a row must be from the same team.

Back row ilﬁﬁl*é'kii*ﬁ'lililil
Front row [2N T NN IR RN BN TR IR N B |

Flgure 13.3: A team photo. Each team has 11 players, and each player in the back row is taller than the corresponding
player in the front row.

Design an algorithm that takes as input two teams and the heights of the players in the teams and
checks if it is possible to place players to take the photo subject to the placement constraint.

Hint: First try some concrete inputs, then make a general conclusion.

Solution: A brute-force approach is to consider every permutation of one array, and compare it
against the other array, element by element. Suppose there are n players in each team. It takes
O(n!) time to enumerate every possible permutation of a team, and testing if a permutation leads
to a satisfactory arrangement takes O(n) time. Therefore, the time complexity is O(n! X n), clearly
unacceptable.

Intuitively, we should narrow the search by focusing on the hardest to place players. Suppose
we want to place Team A behind Team B. If A’s tallest player is not taller than the tallest player
in B, then it’s not possible to place Team A behind Team B and satisfy the placement constraint.
Conversely, if Team A’s tallest player is taller than the tallest player in B, we should place him in
front of the tallest player in B, since the tallest player in B is the hardest to place. Applying the same
logic to the remaining players, the second tallest player in A should be taller than the second tallest
player in B, and so on.

We can efficiently check whether A’s tallest, second tallest, etc. players are each taller than B’s
tallest, second tallest, etc. players by first sorting the arrays of player heights. Figure 13.4 shows the
teams in Figure 13.3 sorted by their heights.

Back row iiié%ii‘i‘ilﬁllﬁl
(RN T T T T T |]

Front row [)
Figure 13.4: The teams from Figure 13.3 in sorted order.
The program below uses this idea to test if a given team can be placed in front of another team.
class Team:

Player = collections.namedtuple(’Player’, ('height’))

def __init__(self, height):
self._players = [Team.Player(h) for h in height]

Checks if A can be placed in front of B.
@staticmethod

193

def valid_placement_exists(A, B):
return all(a < b
for a, b in zip(sorted(A._players), sorted(B._players)))

The time complexity is that of sorting, i.e., O(n logn).

13.10 IMPLEMENT A FAST SORTING ALGORITHM FOR LISTS

Implement a routine which sorts lists efficiently. It should be a stable sort, i.e., the relative positions
of equal elements must remain unchanged.

Hint: In what respects are lists superior to arrays?

Solution: The brute-force approach is to repeatedly delete the smallest element in the list and add
it to the end of a new list. The time complexity is O(n?) and the additional space complexity is O(n),
where 7 is the number of nodes in the list. We can refine the simple algorithm to run in O(1) space
by reordering the nodes, instead of creating new ones.

def insertion_sort(L):
dummy_head = ListNode(®, L)
The sublist consisting of nodes up to and including iter is sorted in
increasing order. We need to ensure that after we move to L.next this
property continues to hold. We do this by swapping L.next with its
predecessors in the list till it’'s in the right place.
while L and L.next:
if L.data > L.next.data:
target, pre = L.next, dummy_head
while pre.next.data < target.data:
pre = pre.next
temp, pre.next, L.next = pre.next, target, target.next
target.next = temp
else:
L = L.next
return dummy_head.next

The time complexity is O(n?), which corresponds to the case where the list is reverse-sorted to begin
with. The space complexity is O(1).

To improve on runtime, we can gain intuition from considering arrays. Quicksort is the best
all round sorting algorithm for arrays—it runs in time O(nlogn), and is in-place. However, it is
not stable. Mergesort applied to arrays is a stable O(n log) algorithm. However, it is not in-place,
since there is no way to merge two sorted halves of an array in-place in linear time.

Unlike arrays, lists can be merged in-place—conceptually, this is because insertion into the
middle of a list is an O(1) operation. The following program implements a mergesort on lists. We
decompose the list into two equal-sized sublists around the node in the middle of the list. We find
this node by advancing two iterators through the list, one twice as fast as the other. When the fast
iterator reaches the end of the list, the slow iterator is at the middle of the list. We recurse on the
sublists, and use Solution 7.1 on Page 84 (merge two sorted lists) to combine the sorted sublists.
def staﬁle_sort_list(L): o

Base cases: L is empty or a single node, nothing to do.

if not L or not L.next:
return L

194

Find the midpoint of L using a slow and a fast pointer.
pre_slow, slow, fast = None, L, L
while fast and fast.next:
pre_slow = slow
fast, slow = fast.next.next, slow.next
pre_slow.next = None # Splits the list into two equal-sized lists.
return merge two_ sorted 11sts(stab1e sort_ llst(L), stable_sort_ 11st(slow))

The time complexity is the same as that of mergesort, i.e., O(n log n). Though no memory is explicitly
allocated, the space complexity is O(logn). This is the maximum function call stack depth, since
each recursive call is with an argument that is half as long.

13.11 COMPUTE A SALARY THRESHOLD

You are working in the finance office for ABC corporation. ABC needs to cut payroll expenses to a
specified target. The chief executive officer wants to do this by putting a cap on last year’s salaries.
Every employee who earned more than the cap last year will be paid the cap this year; employees
who earned no more than the cap will see no change in their salary.

For example, if there were five employees with salaries last year were $90, $30, $100, $40, and $20,
and the target payroll this year is $210, then 60 is a suitable salary cap, since 60+30+60+40+20 = 210.

Design an algorithm for computing the salary cap, given existing salaries and the target payroll.
Hint: How does the payroll vary with the cap?

Solution: Brute-force is not much use—there are an infinite number of possibilities for the cap.

The cap lies between 0 and the maximum current salary. The payroll increases with the cap,
which suggests using binary search in this range—if a cap is too high, no higher cap will work; the
same is true if the cap is too low.

Suppose there are n employees. Let the array holding salary data be A. The payroll, P(c), implied
by a cap of ¢ is ¥, min(A[i], c). Each step of the binary search evaluating P(c) which takes time
O(n). As in Solution 11.5 on Page 149, the number of binary search steps depends on the largest
salary and the desired accuracy.

We can use a slightly more analytical method to avoid the need for a specified tolerance. The
intuition is that as we increase the cap, as long as it does not exceed someone’s salary, the payroll
increases linearly. This suggests iterating through the salaries in increasing order. Assume the
salaries are given by an array A, which is sorted. Suppose the cap for a total payroll of T is known
to lie between the kth and (k + 1)th salaries. We want Zf;(} A[i] + (n — k)c to equal = T, which solves
toc = (T - LI Alil)/(n - k).

For the given example, A = (20,30,40,90,100), and T = 210. The payrolls for caps equal to
the salaries in A are (100, 140, 170, 270, 280). Since T = 210 lies between 170 and 270, the cap lies
between the 40 and 90. For any cap ¢ between 40 and 90, the implied payroll is 20 + 30 + 40 + 2c.
We want this to be 210, so we solve 20 + 30 + 40 +2c =210 for c, yxeldmg c=

def f1nd salary_cap(target_payroll current_ salar1es)
current_salaries.sort()
unadjusted_salary_sum = 6.0
for i, current_salary in enumerate(current_salaries):
adjusted_people = len(current_salaries) - i

195

adjusted_salary_sum = current_salary * adjusted_people
if unadjusted_salary_sum + adjusted_salary_sum >= target_payroll:
return (target_payroll - unadjusted_salary_sum) / adjusted_people
unadjusted_salary_sum += current_salary
No solution, since target_payroll > existing payroll.
return -1.0

The most expensive operation for this entire solution is sorting A, hence the run time is O(n log n).
Once we have A sorted, we simply iterate through its entries looking for the first entry which implies
a payroll that exceeds the target, and then solve for the cap using an arithmetical expression.

If we are given the salary array sorted in advance as well as its prefix sums, then for a given
value of T, we can use binary search to get the cap in O(log n) time.

Variant: Solve the same problem using only O(1) space.

196

CHAPTER

Binary Search Trees

The number of trees which can be formed with n+ 1
given knots a,B,7,... = (n+)" L.

— “A Theorem on Trees,”
A. CavLry, 1889

BSTs are a workhorse of data structures and can be used to solve almost every data structures
problem reasonably efficiently. They offer the ability to efficiently search for a key as well as find
the min and max elements, look for the successor or predecessor of a search key (which itself need
not be present in the BST), and enumerate the keys in a range in sorted order.

BSTs are similar to arrays in that the stored values (the “keys”) are stored in a sorted order.
However, unlike with a sorted array, keys can be added to and deleted from a BST efficiently.
Specifically, a BST is a binary tree as defined in Chapter 9 in which the nodes store keys that are
comparable, e.g., integers or strings. The keys stored at nodes have to respect the BST property—the
key stored at a node is greater than or equal to the keys stored at the nodes of its left subtree and
less than or equal to the keys stored in the nodes of its right subtree. Figure 14.1 on the following
page shows a BST whose keys are the first 16 prime numbers.

Key lookup, insertion, and deletion take time proportional to the height of the tree, which can
in worst-case be O(n), if insertions and deletions are naively implemented. However, there are
implementations of insert and delete which guarantee that the tree has height O(logn). These
require storing and updating additional data at the tree nodes. Red-black trees are an example of
height-balanced BSTs and are widely used in data structure libraries.

A common mistake with BSTs is that an object that’s present in a BST is not updated. The
consequence is that a lookup for that object returns false, even though it’s still in the BST. As a rule,
avoid putting mutable objects in a BST. Otherwise, when a mutable object that’s in a BST is to be
updated, always first remove it from the tree, then update it, then add it back.

The BST prototype is as follows:

class BSTNode:
def __init__(self, data=None, left=None, right=None):
self.data, self.left, self.right = data, left, right

Binary search trees boot camp

Searching is the single most fundamental application of BSTs. Unlike a hash table, a BST offers the
ability to find the min and max elements, and find the next largest/next smallest element. These
operations, along with lookup, delete and find, take time O(logn) for library implementations of
BSTs. Both BSTs and hash tables use O(n) space—in practice, a BST uses slightly more space.

197

Figure 14.1: An example of a BST.

The following program demonstrates how to check if a given value is present in a BST. It is a
nice illustration of the power of recursion when operating on BSTs.

def search_bst(tree, key):
return (tree
if not tree or tree.data == key else search_bst(tree.left, key)
if key < tree.data else search_bst(tree.right, key))
Since the program descends tree with in each step, and spends O(1) time per level, the time
complexity is O(h), where h is the height of the tree.

With a BST you can iterate through elements in sorted order in time O(n) (regardless of whether
it is balanced).

Some problems need a combination of a BST and a hashtable. For example, if you insert
student objects into a BST and entries are ordered by GPA, and then a student’s GPA needs to
be updated and all we have is the student’s name and new GPA, we cannot find the student by
name without a full traversal. However, with an additional hash table, we can directly go to
the corresponding entry in the tree.

Sometimes, it’s necessary to augment a BST to make it possible to manipulate more complicated
data, e.g., intervals, and efficiently support more complex queries, e.g., the number of elements
in a range (on Page 214).

The BST property is a global property—a binary tree may have the property that each node’s
key is greater than the key at its left child and smaller than the key at its right child, but it may
‘notbeaBST.

Table 14.1: Top Tips for Binary Search Trees

Know your binary search tree libraries

Some of the problems in this chapter entail writing a BST class; for others, you can use a BST library.
Python does not come with a built-in BST library.

198

The sortedcontainers module the best-in-class module for sorted sets and sorted dictionaries—
it is performant, has a clean API that is well documented, with a responsive community. The
underlying data structure is a sorted list of sorted lists. Its asymptotic time complexity for inserts
and deletes is O(y/n)) since these operations entail insertion into a list of length roughly v, rather
than the O(log n)) of balanced BSTs. In practice, this is not an issue, since CPUs are highly optimized
for block data movements.

In the interests of pedagogy, we have elected to use the bintrees module which implements
sorted sets and sorted dictionaries using balanced BSTs. However, any reasonable interviewer
should accept sortedcontainers wherever we use bintrees.

Below, we describe the functionalities added by bintrees.

e insert(e) inserts new element e in the BST.

e discard(e) removes e in the BST if present.

e min_item()/max_item() yield the smallest and largest key-value pair in the BST.

o min_key()/max_key() yield the smallest and largest key in the BST.

¢ pop_min()/pop_max() remove the return the smallest and largest key-value pair in the BST.
It’s particularly important to note that these operations take O(log n), since they are backed by the
underlying tree.

The following program illustrates the use of bintrees.

t = bintrees.RBTree([(5, 'Alfa’), (2, ’'Bravo’), (7, ’Charlie’), (3, 'Delta’),
(6, 'Echo’)])

print(t{2]) # ’Bravo’

print(t.min_item(), t.max_item()) # (2, 'Bravo’), (7, ’'Charlie’)

{2: 'Bravo’, 3: 'Delta’, 5: 'Alfa', 6: 'Echo’', 7: ’'Charlie’, 9: ’'Golf’'}
t.insert(9, °'Golf’)

print (t)

print(t.min_key(), t.max_key()) # 2, 9

t.discard(3)
print(t) # {2: ’'Bravo’, 5: 'Alfa’, 6: ’'Echo’, 7: ’'Charlie’, 9: ’'Golf’}

a = (2: ’'Bravo’)
a = t.pop_min()
print(t) # {5: 'Alfa’, 6: 'Echo’, 7: 'Charlie’, 9: ’'Golf’}

b = (9, 'Golf’')
b = t.pop_max(Q)
print(t) # {5: ’'Alfa’, 6: 'Echo’, 7: ’'Charlie’}

14.1 TEST IF A BINARY TREE SATISFIES THE BST PROPERTY

Write a program that takes as input a binary tree and checks if the tree satisfies the BST property.

Hint: Is it correct to check for each node that its key is greater than or equal to the key at its left child and less
than or equal to the key at its right child?

199

Solution: A directapproach, based on the definition of a BST, is to begin with the root, and compute
the maximum key stored in the root’s left subtree, and the minimum key in the root’s right subtree.
We check that the key at the root is greater than or equal to the maximum from the left subtree and
less than or equal to the minimum from the right subtree. If both these checks pass, we recursively
check the root’s left and right subtrees. If either check fails, we return false.

Computing the minimum key in a binary tree is straightforward: we take the minimum of the
key stored at its root, the minimum key of the left subtree, and the minimum key of the right subtree.
The maximum key is computed similarly. Note that the minimum can be in either subtree, since a
general binary tree may not satisfy the BST property.

The problem with this approach is that it will repeatedly traverse subtrees. In the worst-case,
when the tree is a BST and each node’s left child is empty, the complexity is O(n?), where n is the
number of nodes. The complexity can be improved to O(n) by caching the largest and smallest keys
at each node; this requires O(n) additional storage for the cache.

We now present two approaches which have O(n) time complexity.

The first approach is to check constraints on the values for each subtree. The initial constraint
comes from the root. Every node in its left (right) subtree must have a key less than or equal (greater
than or equal) to the key at the root. This idea generalizes: if all nodes in a tree must have keys
in the range [/, u], and the key at the root is w (which itself must be between [I, u], otherwise the
requirement is violated at the root itself), then all keys in the left subtree must be in the range [, w],
and all keys stored in the right subtree must be in the range [w, u].

As a concrete example, when applied to the BST in Figure 14.1 on Page 198, the initial range is
[—o0,]. For the recursive call on the subtree rooted at B, the constraint is [0, 19]; the 19 is the
upper bound required by A on its left subtree. For the recursive call starting at the subtree rooted at
F, the constraint is [7,19]. For the recursive call starting at the subtree rooted at K, the constraint is
[23,43]. The binary tree in Figure 9.1 on Page 112 is identified as not being a BST when the recursive
call reaches C—the constraint is [—oo, 6], but the key at F is 271, so the tree cannot satisfy the BST

property

def is b1nary_tree bst(tree, low range= float('-lnf), h1gh range= float(1nf))
if not tree:
return True
elif not low_range <= tree.data <= high_range:
return False
return (is_binary_tree_bst(tree.left, low_range, tree.data)
and is_binary_tree bst(tree rlght tree. data. hlgh range))

The time complexity is O(n), and the additional space complex1ty is O(h), where h is the helght of
the tree.

Alternatively, we can use the fact that an inorder traversal visits keys in sorted order. Further-
more, if an inorder traversal of a binary tree visits keys in sorted order, then that binary tree must
be a BST. (This follows directly from the definition of a BST and the definition of an inorder walk.)
Thus we can check the BST property by performing an inorder traversal, recording the key stored
at the last visited node. Each time a new node is visited, its key is compared with the key of the
previously visited node. If at any step in the walk, the key at the previously visited node is greater
than the node currently being visited, we have a violation of the BST property.

All these approaches explore the left subtree first. Therefore, even if the BST property does not
hold at a node which is close to the root (e.g., the key stored at the right child is less than the key

200

stored at the root), their time complexity is still O(n).

We can search for violations of the BST property in a BFS manner, thereby reducing the time
complexity when the property is violated at a node whose depth is small.

Specifically, we use a queue, where each queue entry contains a node, as well as an upper and
a lower bound on the keys stored at the subtree rooted at that node. The queue is initialized to the
root, with lower bound —oo and upper bound co. We iteratively check the constraint on each node.
If it violates the constraint we stop—the BST property has been violated. Otherwise, we add its
children along with the corresponding constraint.

For the example in Figure 14.1 on Page 198, we initialize the queue with (4, [-, o]). Each
time we pop a node, we first check the constraint. We pop the first entry, (A, [-oo, o]), and add
its children, with the corresponding constraints, i.e., (B,[—o0,19]) and (I,[19,]). Next we pop
(B,[-0,19]), and add its children, i.e., (C,[-00,7]) and (D, [7,19]). Continuing through the nodes,
we check that all nodes satisfy their constraints, and thus verify the tree is a BST.

If the BST property is violated in a subtree consisting of nodes within a particular depth, the
violation will be discovered without visiting any nodes at a greater depth. This is because each
time we enqueue an entry, the lower and upper bounds on the node’s key are the tightest possible.
def is_binary_tree_bst(tree):

QueueEntry = collections.namedtuple(’QueueEntry’, (’'node’, ’'lower’,
"upper’))

bfs_queue = collections.deque(
[QueueEntry (tree, float(’-inf’), float(’'inf’))])

while bfs_queue:
front = bfs_queue.popleft()
if front.node:
if not front.lower <= front.node.data <= front.upper:
return False
bfs_queue += [
QueueEntry (front.node.left, front.lower, front.node.data),
QueueEntry(front.node.right, front.node.data, front.upper)

]
return True

The time complexity is O(n), and the additional space complexity is O(n).

14.2 FIND THE FIRST KEY GREATER THAN A GIVEN VALUE IN A BST

Write a program that takes as input a BST and a value, and returns the first key that would appear
in an inorder traversal which is greater than the input value. For example, when applied to the BST
in Figure 14.1 on Page 198 you should return 29 for input 23.

Hint: Perform binary search, keeping some additional state.

Solution: We can find the desired node in O(n) time, where 7 is the number of nodes in the BST, by
doing an inorder walk. This approach does not use the BST property.

A better approach is to use the BST search idiom. We store the best candidate for the result and
update that candidate as we iteratively descend the tree, eliminating subtrees by comparing the
keys stored at nodes with the input value. Specifically, if the current subtree’s root holds a value
less than or equal to the input value, we search the right subtree. If the current subtree’s root stores

201

a key that is greater than the input value, we search in the left subtree, updating the candidate to
the current root. Correctness follows from the fact that whenever we first set the candidate, the
desired result must be within the tree rooted at that node.

For example, when searching for the first node whose key is greater than 23 in the BST in
Figure 14.1 on Page 198, the node sequence is A, 1,], K, L. Since L has no left child, its key, 29, is the
result.

def find_first_greater_than_k(tree, k):
subtree, first_so_far = tree, None
while subtree:
if subtree.data > k:
first_so_far, subtree = subtree, subtree.left
else: # Root and all keys in left subtree are <= k, so skip them.
subtree = subtree.right
return first_so_far
The time complexity is O(h), where h is the height of the tree. The space complexity is O(1).
Variant: Write a program that takes as input a BST and a value, and returns the node whose key
equals the input value and appears first in an inorder traversal of the BST. For example, when
applied to the BST in Figure 14.2, your program should return Node B for 108, Node G for 285, and

null for 143.

Figure 14.2: A BST with duplicate keys.

14.3 FIND THE k LARGEST ELEMENTS IN A BST

A BST is a sorted data structure, which suggests that it should be possible to find the k largest keys
easily.

Write a program that takes as input a BST and an integer k, and returns the k largest elements in the
BST in decreasing order. For example, if the input is the BST in Figure 14.1 on Page 198 and k = 3,
your program should return (53,47, 43).

Hint: What does an inorder traversal yield?

Solution: The brute-force approach is to do an inorder traversal, which enumerates keys in ascend-
ing order, and return the last k visited nodes. A queue is ideal for storing visited nodes, since it
makes it easy to evict nodes visited more than k steps previously. A drawback of this approach is

202

that it potentially processes many nodes that cannot possibly be in the result, e.g., if k is small and
the left subtree is large.

A better approach is to begin with the desired nodes, and work backwards. We do this by
recursing first on the right subtree and then on the left subtree. This amounts to a reverse-
inorder traversal. For the BST in Figure 14.1 on Page 198, the reverse inorder visit sequence is
(P,O,I,N,K,M,L,],A,G H,F,B,E,C,D).

As soon as we visit k nodes, we can halt. The code below uses a dynamic array to store the
desired keys. As soon as the array has k elements, we return. We store newer nodes at the end of
the array, as per the problem specification.

To find the five biggest keys in the tree in Figure 14.1 on Page 198, we would recurseon 4,1, O, P,
in that order. Returning from recursive calls, we would visit P, O, I, in that order, and add their keys
to the result. Then we would recurse on], K, N, in that order. Finally, we would visit N and then K,
adding their keys to the result. Then we would stop, since we have five keys in the array.
def find_k_largest_in_bst(tree, k):

def find_k_largest_in_bst_helper(tree):
Perform reverse inorder traversal.
if tree and len(k_largest_elements) < k:
find_k_largest_in_bst_helper(tree.right)
if len(k_largest_elements) < k:

k_largest_elements.append(tree.data)
find_k_largest_in_bst_helper(tree.left)

k_largest_elements = []

find_k_largest_in_bst_helper(tree)

return k_largest_elements
The time complexity is O(h + k), which can be much better than performing a conventional inorder
walk, e.g., when the tree is balanced and k is small. The complexity bound comes from the
observation that the number of times the program descends in the tree can be at most & more than
the number of times it ascends the tree, and each ascent happens after we visit a node in the result.

After k nodes have been added to the result, the program stops.

144 Compute THE LCA N A BST

Since a BST is a specialized binary tree, the notion of lowest common ancestor, as expressed in
Problem 9.4 on Page 118, holds for BSTs too.

In general, computing the LCA of two nodes in a BST is no easier than computing the LCA in
a binary tree, since structurally a binary tree can be viewed as a BST where all the keys are equal.
However, when the keys are distinct, it is possible to improve on the LCA algorithms for binary
trees.

Design an algorithm that takes as input a BST and two nodes, and returns the LCA of the two
nodes. For example, for the BST in Figure 14.1 on Page 198, and nodes C and G, your algorithm
should return B. Assume all keys are distinct. Nodes do not have references to their parents.

Hint: Take advantage of the BST property.

Solution: In Solution 9.3 on Page 117 we presented an algorithm for this problem in the context of
binary trees. The idea underlying that algorithm was to do a postorder traversal—the LCA is the

203

first node visited after the two nodes whose LCA we are to compute have been visited. The time
complexity was O(n), where 1 is the number of nodes in the tree.

This approach can be improved upon when operating on BSTs with distinct keys. Consider the
BST in Figure 14.1 on Page 198 and nodes C and G. Since both C and G hold keys that are smaller
than A’s key, their LCA must lie in A’s left subtree. Examining B, since C’s key is less than B’s key,
and B’s key is less than G’s key. B must be the LCA of C and G.

Let s and b be the two nodes whose LCA we are to compute, and without loss of generality
assume the key at s is smaller. (Since the problem specified keys are distinct, it cannot be that s and
b hold equal keys.) Consider the key stored at the root of the BST. There are four possibilities:

e If the root’s key is the same as that stored at s or at b, we are done—the root is the LCA.

o If the key at s is smaller than the key at the root, and the key at b is greater than the key at the

root, the root is the LCA.

o If the keys at s and b are both smaller than that at the root, the LCA must lie in the left subtree

of the root.

o If both keys are larger than that at the root, then the LCA must lie in the right subtree of the

root.

Input nodes are nonempty and the key at s is less than or equal to that at b.
def find_LCA(tree, s, b):
while tree.data < s.data or tree.data > b.data:
Keep searching since tree is outside of [s, b].
while tree.data < s.data:
tree = tree.right # LCA must be in tree'’'s right child.
while tree.data > b.data:
tree = tree.left # LCA must be in tree’s left child.
Now, s.data <= tree.data && tree.data <= b.data.
return tree

Since we descend one level with each iteration, the time complexity is O(h), where h is the height of
the tree.

14.5 REecoNsTRUCT A BST FROM TRAVERSAL DATA

As discussed in Problem 9.12 on Page 125 there are many different binary trees that yield the same
sequence of visited nodes in an inorder traversal. This is also true for preorder and postorder
traversals. Given the sequence of nodes that an inorder traversal sequence visits and either of the
other two traversal sequences, there exists a unique binary tree that yields those sequences. Here
we study if it is possible to reconstruct the tree with less traversal information when the tree is
known to be a BST.

It is critical that the elements stored in the tree be unique. If the root contains key v and the
tree contains more occurrences of v, we cannot always identify from the sequence whether the
subsequent vs are in the left subtree or the right subtree. For example, for the tree rooted at G in
Figure 14.2 on Page 202 the preorder traversal sequence is 285,243,285,401. The same preorder
traversal sequence is seen if 285 appears in the left subtree as the right child of the node with key
243 and 401 is at the root’s right child.

Suppose you are given the sequence in which keys are visited in an inorder traversal of a BST, and
all keys are distinct. Can you reconstruct the BST from the sequence? If so, write a program to do
so. Solve the same problem for preorder and postorder traversal sequences.

204

Hint: Draw the five BSTs on the keys 1,2, 3, and the corresponding traversal orders.

Solution: First, with some experimentation, we see the sequence of keys generated by an inorder
traversal is not enough to reconstruct the tree. For example, the key sequence (1, 2, 3) corresponds
to five distinct BSTs as shown in Figure 14.3.

Figure 14.3: Five distinct BSTs for the traversal sequence (1,2, 3).

However, the story for a preorder sequence is different. As an example, consider the preorder
key sequence (43,23,37,29,31,41,47,53). The root must hold 43, since it’s the first visited node.
The left subtree contains keys less than 43, i.e., 23,37, 29, 31, 41, and the right subtree contains keys
greater than 43, i.e., 47,53. Furthermore, (23,37,29, 31, 41) is exactly the preorder sequence for the
left subtree and (47,53) is exactly the preorder sequence for the right subtree. We can recursively
reason that 23 and 47 are the roots of the left and right subtree, and continue to build the entire tree,
which is exactly the subtree rooted at Node I in Figure 14.1 on Page 198.

Generalizing, in any preorder traversal sequence, the first key corresponds to the root. The
subsequence which begins at the second element and ends at the last key less than the root,
corresponds to the preorder traversal of the root’s left subtree. The final subsequence, consisting
of keys greater than the root corresponds to the preorder traversal of the root’s right subtree. We
recursively reconstruct the BST by recursively reconstructing the left and right subtrees from the
two subsequences then addmg them to the root.

def rebuild_bst_ from_preorder(preorder sequence)
if not preorder_sequence:
return None

transition_point = next((i for i, a in enumerate(preorder_sequence)
if a > preorder_sequence[0]),
len(preorder_sequence))
return BSTNode (
preorder_sequence[0],
rebuild_bst_from_preorder (preorder_sequence[l:transition_point]),
rebu11d bst from_preorder(preorder sequence[trans1t1on_p01nt]))

The worst-case input for this algorithm is the pre-order sequence correspondmg to a left-skewed
tree. The worst-case time complexity satisfies the recurrence W(n) = W(n — 1) + O(n), which
solves to O(n?). The best-case input is a sequence corresponding to a right-skewed tree, and the
corresponding time complexity is O(n). When the sequence corresponds to a balanced BST, the time
complexity is given by B(n) = 2B(n/2) + O(n), which solves to O(n logn).

The implementation above potentially iterates over nodes multiple times, which is wasteful.
A better approach is to reconstruct the left subtree in the same iteration as identifying the nodes
which lie in it. The code shown below takes this approach. The intuition is that we do not want
to iterate from first entry after the root to the last entry smaller than the root, only to go back and

205

partially repeat this process for the root’s left subtree. We can avoid repeated passes over nodes
by including the range of keys we want to reconstruct the subtrees over. For example, looking
at the preorder key sequence (43,23,37,29,31,41,47,53), instead of recursing on (23,37,29, 31, 41)
(which would involve an iteration to get the last element in this sequence). We can directly recur on
(23,37,29,31,41,47,53), with the constraint that we are building the subtree on nodes whose keys
are less than 43.

def rebuild_bst_from_preorder (preorder_sequence):
def rebuild_bst_from_preorder_on_value_range (lower_bound, upper_bound):
if root_idx[0] == len(preorder_sequence):
return None

root = preorder_sequence[root_idx[0]]

if not lower_bound <= root <= upper_bound:
return None

root_idx[0] += 1

Note that rebuild_bst_from_preorder_on_value_range updates root_idx[0].

So the order of following two calls are critical.

left_subtree = rebuild_bst_from_preorder_on_value_range(
lower_bound, root)

right_subtree = rebuild_bst_from_preorder_on_value_range(
root, upper_bound)

return BSTNode(root, left_subtree, right_subtree)

root_idx = [0] # Tracks current subtree.
return rebuild_bst_from_preorder_on_value_range(float(’'-inf’'), float('inf'))

The worst-case time complexity is O(n), since it performs a constant amount of work per node.
Note the similarity to Solution 24.20 on Page 377.

A postorder traversal sequence also uniquely specifies the BST, and the algorithm for recon-
structing the BST is very similar to that for the preorder case.

14.6 FIND THE CLOSEST ENTRIES IN THREE SORTED ARRAYS

Design an algorithm that takes three sorted arrays and returns one entry from each such that the
minimum interval containing these three entries is as small as possible. For example, if the three
arrays are (5, 10,15), (3,6,9,12,15), and (8, 16, 24), then 15, 15, 16 lie in the smallest possible interval.

Hint: How would you proceed if you needed to pick three entries in a single sorted array?

Solution: The brute-force approach is to try all possible triples, e.g., with three nested for loops.
The length of the minimum interval containing a set of numbers is simply the difference of the
maximum and the minimum values in the triple. The time complexity is O(Imn), where I, m, n are
the lengths of each of the three arrays.

The brute-force approach does not take advantage of the sortedness of the input arrays. For
the example in the problem description, the smallest intervals containing (5,3,16) and (5, 3,24)
must be larger than the smallest interval containing (5, 3, 8) (since 8 is the maximum of 5, 3,8, and
8 <16 < 24).

Let’s suppose we begin with the triple consisting of the smallest entries in each array. Let s be
the minimum value in the triple and t the maximum value in the triple. Then the smallest interval

206

with left endpoint s containing elements from each array must be [s, t], since the remaining two
values are the minimum possible.

Now remove s from the triple and bring the next smallest element from the array it belongs to
into the triple. Let s” and ¢’ be the next minimum and maximum values in the new triple. Observe
[s’, #] must be the smallest interval whose left endpoint is s”: the other two values are the smallest
values in the corresponding arrays that are greater than or equal to s’. By iteratively examining
and removing the smallest element from the triple, we compute the minimum interval starting at
that element. Since the minimum interval containing elements from each array must begin with
the element of some array, we are guaranteed to encounter the minimum element.

For example, we begin with (5,3,8). The smallest interval whose left endpoint is 3 has length
8 — 3 = 5. The element after 3 is 6, so we continue with the triple (5,6,8). The smallest interval
whose left endpoint is 5 has length 8 -5 = 3. The element after 5 is 10, so we continue with the triple
(10,6, 8). The smallest interval whose left endpoint is 6 has length 10 — 6 = 4. The element after 6
is 9, so we continue with the triple (10,9, 8). Proceeding in this way, we obtain the triples (10,9, 16),
(10,12, 16), (15,12,16), (15,15,16). Out of all these triples, the one contained in a minimum length
interval is (15, 15, 16).

In the following code, we implement a general purpose function which finds the closest entries
in k sorted arrays. Since we need to repeatedly insert, delete, find the minimum, and find the
maximum amongst a collection of k elements, a BST is the natural choice.

def find_closest_elements_in_sorted_arrays(sorted_arrays):

min_distance_so_far = float(’'inf’)
Stores array iterators in each entry.
iters = bintrees.RBTree()
for idx, sorted_array in enumerate(sorted_arrays):

it = iter(sorted_array)

first_min = next(it, None)

if first_min is not None:

iters.insert ((first_min, idx), it)

while True:
min_value, min_idx = iters.min_key()
max_value = iters.max_key() [0]
min_distance_so_far = min(max_value - min_value, min_distance_so_far)
it = iters.pop_min()[1]
next_min = next(it, None)
Return if some array has no remaining elements.
if next_min is None:

return min_distance_so_far
iters.insert ((next_min, min_idx), it)

The time complexity is O(n logk), where 1 is the total number of elements in the k arrays. For the
special case k = 3 specified in the problem statement, the time complexity is O(n log 3) = O(n).

14.7 ENUMERATE NUMBERS OF THE FORM 4 + b V2

Numbers of the form a + b /g, where a and b are nonnegative integers, and ¢ is an integer which is
not the square of another integer, have special properties, e.g., they are closed under addition and
multiplication. Some of the first few numbers of this form are given in Figure 14.4 on the following

page.
207

(0+0v2) (1+0v2) (0+1V2) (2+0v2) (1+1v2) (0+2v2) (2+1V2) (1+42V2) 2+2v2)
0.0 1.0 1414 20 2414 2828 3414 3828 4828 "

Figure 14.4: Some points of the forma + b V2. (For typographical reasons, this figure does not include all numbers of
the form a + b V2 between 0 and 2 + 2 V2, e.g., 3+ 0V2,4 + 0v2, 0 + 3V2, 3 + 1 V2 lie in the interval but are not
included.)

Design an algorithm for efficiently computing the k smallest numbers of the form a + b V2 for
nonnegative integers 4 and b.

Hint: Systematically enumerate points.

Solution: A key fact about V2 is that it is irrational, i.e., it cannot equal to % for any integers 4, b.
This implies that if x + y V2 = ¥’ + ¥ V2, where x and y are integers, then x = ¥’ and y = ¥’ (since
otherwise V2 = -;:—;)

Here is a brute-force solution. Generate all numbers of the form a + b2 where a and b are
integers, 0 < a,b < k — 1. This yields exactly k? numbers and the k smallest numbers must lie in
this collection. We can sort these numbers and return the k smallest ones. The time complexity is
O(k? log(k?)) = O(k? log k).

Intuitively, it is wasteful to generate k* numbers, since we only care about a small fraction of
them.

We know the smallest number is 0 + 0 V2. The candidates for next smallest number are 1+ 0 V2
and 0 + 1V2. From this, we can deduce the following algorithm. We want to maintain a collection
of real numbers, initialized to 0 + 0 V2. We perform k extractions of the smallest element, call it
a + b V2, followed by insertion of (a+ 1) + b V2 and a + (b + 1) V2 to the collection.

The operations on this collection are extract the minimum and insert. Since it is possible that
the same number may be inserted more than once, we need to ensure the collection does not create
duplicates when the same item is inserted twice. A BST satisfies these operations efficiently, and
is used in the implementation below. It is initialized to contain 0 + 0 V2. We extract the minimum
from the BST, which is 0+ 0 V2, and insert 1 + 0 V2 and 0 + 1 V2 to the BST. We extract the minimum
from the BST, whichis 1+ 0 \/5, and insert 2 + 02 and 1 + 1V2 to the BST, which now consists of
0+1v2 =1414,2+0V2 = 2,1 + 1V2 = 2.414. We extract the minimum from the BST, which is
0+ 12, and insert 1 + 1v2 and 0 + 2 V2. The first value is already present, so the BST updates to
2+0V2=2,1+1V2=2414,0+2V2 = 2.828. (Although it’s not apparent from this small example,
the values we add back to the BST may be smaller than values already present in it, so we really
need the BST to hold values.)
class ABSqrt2:

def __init__(self, a, b):

self.a, self.b =a, b
self.val = a + b * math.sqrt(2)

def __1t__(self, other):
return self.val < other.val

def __eq__(self, other):
return self.val == other.val

208

def generate_first_k_a_b_sqrt2(k):
Initial for @ + ® * sqrt(2).
candidates = bintrees.RBTree ([(ABSqrt2(®, 0), None)])

result = []
while len(result) < k:
next_smallest = candidates.pop_min()[0]
result.append(next_smallest.val)
Adds the next two numbers derived from next_smallest.
candidates[ABSqrt2 (next_smallest.a + 1, next_smallest.b)]
candidates[ABSqrt2 (next_smallest.a, next_smallest.b + 1)]
return result

None
None

In each iteration we perform a deletion and two insertions. There are k such insertions, so the time
complexity is O(k log k). The space complexity is O(k), since there are not more than 2k insertions.

Now we describe an O(n) time solution. It is simple to implement, but is less easy to understand
than the one based on BST. The idea is that the (1 + 1)th value will be the sum of 1 or V2 with a
previous value. We could iterate through all the entries in the result and track the smallest such
value which is greater than nth value. However, this takes time O(n) to compute the (n + 1)th
element.

Intuitively, there is no need to examine all prior values entries when computing (1 + 1)th value.
Let’s say we are storing the result in an array A. Then we need to track just two entries—i, the
smallest index such that A[i] + 1 > A[n — 1], and j, smallest index such that A[j] + V2> Aln-1].
Clearly, the (n + 1)th entry will be the smaller of A[i] + 1 and A[j] + V2. After obtaining the (n + 1)th
entry, if it is A[i] + 1, we increment i. If it is A[j] + V2, we increment j- If Ali] + 1 equals A[j] + V2,
we increment both i and j.

To illustrate, suppose A is initialized to (0), and i and j are 0. The computation proceeds as
follows:

(1.) Since A[0] +1 =1 < A[0] + V2 = 1.414, we push 1 into A and increment i. Now A = (0,1),
i=1,j=0.

(2) Since A[1] +1 = 2 > A[0] + V2 = 1.414, we push 1.414 into A and increment j. Now
A=(0,1,1414),i=1,j=1.

(3.) Since A[1]+1 = 2 < A[1] + = 2.414, we push 2 into A and increment i. Now A =
(0,1,1.414,2),i=2,j=1.

(4.) Since A[2] +1 = 2.414 = A[1] + V2 = 2.414, we push 2.414 into A and increment both i and ;.
Now A =(0,1,1.414,2,2.414),i=3,j = 2.

(5.) Since A[3]+1 = 3 > A[2] + V2 = 2.828, we push 2.828 into A and increment j. Now
A=(0,1,1414,2,2.828),i=3,j = 3.

(6.) Since A[3]+1 = 3 < A[3] + V2 = 3414, we push 3 into A and increment i. Now A =
(0,1,1.414,2,2.828,3),i =4,j = 3.

def generate_first_k_a_b_sqrt2(k):
Will store the first k numbers of the form a + b sqrt(2).
cand = [ABSqrt2(9, 0)]
i=3j=20
for _ in range(1, k):
cand_i_plus_1 = ABSqrt2(cand[i].a + 1, cand[i].b)
cand_j_plus_sqrt2 = ABSqrt2(cand[j].a, cand[j].b + 1)
cand.append(min(cand_i_plus_1, cand_j_plus_sqrt2))
if cand_i_plus_1l.val == cand[-1].val:

209

i+=1
if cand_j_plus_sqrt2.val == cand[-1].val:
j +=1
return [a.val for a in cand]

Each additional element takes O(1) time to compute, implying an O(n) time complexity to compute
the first n values of the forma + b V2.

14.8 BuiLD A MINIMUM HEIGHT BST FROM A SORTED ARRAY

Given a sorted array, the number of BSTs that can be built on the entries in the array grows
enormously with its size. Some of these trees are skewed, and are closer to lists; others are more
balanced. See Figure 14.3 on Page 205 for an example.

How would you build a BST of minimum possible height from a sorted array?
Hint: Which element should be the root?

Solution: Brute-force is not much help here—enumerating all possible BSTs for the given array in
search of the minimum height one requires a nontrivial recursion, not to mention enormous time
complexity.

Intuitively, to make a minimum height BST, we want the subtrees to be as balanced as possible—
there’s no point in one subtree being shorter than the other, since the height is determined by the
taller one. More formally, balance can be achieved by keeping the number of nodes in both subtrees
as close as possible.

Let n be the length of the array. To achieve optimum balance we can make the element in the
middle of the array, i.e., the | Jth entry, the root, and recursively compute minimum height BSTs
for the subarrays on either side of this entry.

As a concrete example, if the array is (2,3,5,7,11, 13,17, 19, 23), the root’s key will be the middle
element, i.e.,, 11. This implies the left subtree is to be built from (2,3,5,7), and the right subtree
is to be built from (13,17,19,23). To make both of these minimum height, we call the procedure
recursively.
;;éngﬁiid_ﬁin_height_bst;from_gorted;array(;jgw- o
def build_min_height_bst_from_sorted_subarray(start, end):

if start >= end:

return None
mid = (start + end) // 2
return BSTNode(A[mid],

build_min_height_bst_from_sorted_subarray(start, mid),
build_min_height_bst_from_sorted_subarray(mid + 1, end))

return build_min_height_bst_from_sorted_subarray(®, len(A))

The time complexity T(n) satisfies the recurrence T(n) = 2T(n/2)+ O(1), which solves to T(n) = O(n).
Another explanation for the time complexity is that we make exactly 7 calls to the recursive function
and spend O(1) within each call.

210

14.9 TesT IF THREE BST NODES ARE TOTALLY ORDERED

Write a program which takes two nodes in a BST and a third node, the “middle” node, and
determines if one of the two nodes is a proper ancestor and the other a proper descendant of the
middle. (A proper ancestor of a node is an ancestor that is not equal to the node; a proper descendant
is defined similarly.) For example, in Figure 14.1 on Page 198, if the middle is Node], your function
should return true if the two nodes are {4, K} or {I, M}. It should return false if the two nodes are
{I, P} or {], K}. You can assume that all keys are unique. Nodes do not have pointers to their parents

Hint: For what specific arrangements of the three nodes does the check pass?

Solution: A brute-force approach would be to check if the first node is a proper ancestor of the
middle and the second node is a proper descendant of the middle. If this check returns true, we
return true. Otherwise, we return the result of the same check, swapping the roles of the first and
second nodes. For the BST in Figure 14.1 on Page 198, with the two nodes being {L, I} and middle
K, searching for K from L would be unsuccessful, but searching for K from I would succeed. We
would then search for L from K, which would succeed, so we would return true.

Searching has time complexity O(h), where F is the height of the tree, since we can use the BST
property to prune one of the two children at each node. Since we perform a maximum of three
searches, the total time complexity is O(h).

One disadvantage of trying the two input nodes for being the middle’s ancestor one-after-
another is that even when the three nodes are very close, e.g., if the two nodes are {4, J} and middle
node is I in Figure 14.1 on Page 198, if we begin the search for the middle from the lower of the two
nodes, e.g., from], we incur the full O(h) time complexity.

We can prevent this by performing the searches for the middle from both alternatives in an
interleaved fashion. If we encounter the middle from one node, we subsequently search for the
second node from the middle. This way we avoid performing an unsuccessful search on a large
subtree. For the example of {4,]} and middle I in Figure 14.1 on Page 198, we would search for I
from both A and], stopping as soon as we get to I from A, thereby avoiding a wasteful search from
J. (We would still have to search for] from I to complete the computatlon)

def pair_ 1nc1udes ancestor_ and descendant of m(p0551b1e anc_or_desc_ 0
possible_anc_or_desc_1, middle):
search_0, search_1 = possible_anc_or_desc_0®, possible_anc_or_desc_1

Perform interleaved searching from possible_anc_or_desc_0 and
possible_anc_or_desc_1 for middle.
while (search_0 is not possible_anc_or_desc_1 and search_® is not middle
and search_1 is not possible_anc_or_desc_® and search_1 is not middle
and (search_0® or search_1)):
if search_0:
search_0 = (search_0.left
if search_0.data > middle.data else search_0.right)
if search_1:
search_1 = (search_1.left
if search_1l.data > middle.data else search_l.right)

If both searches were unsuccessful, or we got from

possible_anc_or_desc_® to possible_anc_or_desc_1 without seeing middle,
or from possible_anc_or_desc_1 to possible_anc_or_desc_0® without seeing
middle, middle cannot lie between possible_anc_or_desc_0 and

211

possible_anc_or_desc_1.
if ((search_0® is not middle and search_1 is not middle)
or search_0 is possible_anc_or_desc_1
or search_1 is possible_anc_or_desc_0):
return False

def search_target(source, target):
while source and source is not target:
source = source.left if source.data > target.data else source.right
return source is target

If we get here, we already know one of possible_anc_or_desc_0 or

possible_anc_or_desc_1 has a path to middle. Check if middle has a path

to possible_anc_or_desc_l or to possible_anc_or_desc_0.

return search_target(middle, possible_anc_or_desc_1

if search_® is middle else possible_anc_or_desc_0)

When the middle node does have an ancestor and descendant in the pair, the time complexity is
O(d), where d is the difference between the depths of the ancestor and descendant. The reason is
that the interleaved search will stop when the ancestor reaches the middle node, i.e., after O(d)
iterations. The search from the middle node to the descendant then takes O(d) steps to succeed.
When the middle node does not have an ancestor and descendant in the pair, the time complexity

is O(h), which corresponds to a worst-case search in a BST.

14.10 THE RANGE LOOKUP PROBLEM

Consider the problem of developing a web-service that takes a geographical location, and returns
the nearest restaurant. The service starts with a set of restaurant locations—each location includes
X and Y-coordinates. A query consists of a location, and should return the nearest restaurant (ties
can be broken arbitrarily).

One approach is to build two BSTs on the restaurant locations: Tx sorted on the X coordinates,
and Ty sorted on the Y coordinates. A query on location (p, g) can be performed by finding all the
restaurants whose X coordinate is in the interval [p — D,p + D], and all the restaurants whose Y
coordinate is in the interval [q — D, g + D], taking the intersection of these two sets, and finding the
restaurant in the intersection which is closest to (p,q). Heuristically, if D is chosen correctly, the
subsets are small and a brute-force search for the closest point is fast. One approach is to start with
a small value for D and keep doubling it until the final intersection is nonempty.

There are other data structures which are more robust, e.g., Quadtrees and k-d trees, buit the
approach outlined above works well in practice.

Write a program that takes as input a BST and an interval and returns the BST keys that lie in the
interval. For example, for the tree in Figure 14.1 on Page 198, and interval [16,31], you should
return 17,19, 23, 29, 31.

Hint: How many edges are traversed when the successor function is repeatedly called m times?

Solution: A brute-force approach would be to perform a traversal (inorder, postorder, or preorder)
of the BST and record the keys in the specified interval. The time complexity is that of the traversal,
i.e.,, O(n), where n is the number of nodes in the tree.

212

The brute-force approach does not exploit the BST property—it would work unchanged for an
arbitrary binary tree.
We can use the BST property to prune the traversal as follows:
o If the root of the tree holds a key that is less than the left endpoint of the interval, the left
subtree cannot contain any node whose key lies in the interval.
o If the root of the tree holds a key that is greater than the right endpoint of the interval, the
right subtree cannot contain any node whose key lies in the interval.
o Otherwise, the root of the tree holds a key that lies within the interval, and it is possible for
both the left and right subtrees to contain nodes whose keys lie in the interval.
For example, for the tree in Figure 14.1 on Page 198, and interval [16, 42], we begin the traversal
at A, which contains 19. Since 19 lies in [16, 42], we explore both of A’s children, namely B and I.
Continuing with B, we see B’s key 7 is less than 16, so no nodes in B’s left subtree can lie in the
interval [16, 42]. Similarly, when we get to I, since 43 > 42, we need not explore I's right subtree.

Interval = collections.namedtuple(’Interval’, ('left’', ’'right’))

def range_lookup_in_bst(tree, interval):
def range_lookup_in_bst_helper(tree):
if tree is None:
return

if interval.left <= tree.data <= interval.right:
tree.data lies in the interval.
range_lookup_in_bst_helper(tree.left)
result.append(tree.data)
range_lookup_in_bst_helper(tree.right)

elif interval.left > tree.data:
range_lookup_in_bst_helper(tree.right)

else: # interval.right > tree.data
range_lookup_in_bst_helper(tree.left)

result = []
range_lookup_in_bst_helper(tree)
return result

The time complexity is tricky to analyze. It makes sense to reason about time complexity
in terms of the number of keys m that lie in the specified interval. We partition the nodes into
two categories—those that the program recurses on and those that it does not. For our working
example, the program recurses on A,B,F,G,H,I,],K,L,M,N. Not all of these have keys in the
specified interval, but no nodes outside of this set can have keys in the interval. Looking more
carefully at the nodes we recurse on, we see these nodes can be partitioned into three subsets—
nodes on the search path to 16, nodes on the search path to 42, and the rest. All nodes in the third
subset must lie in the result, but some of the nodes in the first two subsets may or may not lie in
the result. The traversal spends O(h) time visiting the first two subsets, and O(m) time traversing
the third subset—each edge is visited twice, once downwards, once upwards. Therefore the total
time complexity is O(m + h), which is much better than O(n) brute-force approach when the tree is
balanced, and very few keys lie in the specified range.

213

Augmented BSTs

Thus far we have considered BSTs in which each node stores a key, a left child, a right child, and,
possibly, the parent. Adding fields to the nodes can speed up certain queries. As an example,
consider the following problem.

Suppose you needed a data structure that supports efficient insertion, deletion, lookup of integer
keys, as well as range queries, i.e., determining the number of keys that lie in an interval.

We could use a BST, which has efficient insertion, deletion and lookup. To find the number of
keys that lie in the interval [U, V], we could search for the first node with a key greater than or equal
to U, and then call the successor operation (9.10 on Page 123) until we reach a node whose key is
greater than V (or we run out of nodes). This has O(h + m) time complexity, where h is the height of
the tree and m is the number of nodes with keys within the interval. When m is large, this become
slow.

We can do much better by augmenting the BST. Specifically, we add a size field to each node,
which is the number of nodes in the BST rooted at that node.

For simplicity, suppose we want to find the number of entries that are less than a specified value.
As an example, say we want to count the number of keys less than 40 in the BST in Figure 14.1 on
Page 198, and that each node has a size field. Since the root A’s key, 19, is less than 40, the BST
property tells us that all keys in A’s left subtree are less than 40. Therefore we can add 7 (which
we get from the left child’s size field) and 1 (for A itself) to the running count, and recurse with A’s
right child.

Generalizing, let’s say we want to count all entries less than v. We initialize count to 0. Since
there can be duplicate keys in the tree, we search for the first occurrence of v in an inorder traversal
using Solution 14.2 on Page 201. (If v is not present, we stop when we have determined this.) Each
time we take a left child, we leave count unchanged; each time we take a right child, we add one
plus the size of the corresponding left child. If v is present, when we reach the first occurrence of v,
we add the size of v’s left child, The same approach can be used to find the number of entries that
are greater than v, less than or equal to v, and greater than or equal to v.

For example, to count the number of less than 40 in the BST in Figure 14.1 on Page 198 we would
search for 40. Since A’s key, 19 is less than 40, we update count to 7 + 1 = 8 and continue from
I. Since I's key, 43 is great<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>