ECE 2060 Lecture 1

Intro to number systems and conversion

THE OHIO STATE UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING How do computers communicate?

Wire
Wi-Fi
Fiber Optics

https://www.dreamstime.com/

Wire

- A wire is connected between two computers
- Wire carries electricity (voltages, currents)
- Thus information is represented by electricity (we'll consider voltages)

Wi-fi

- Computer 1 sends electrical signal representing the information to an antenna by radio wave
- A router receives the radio wave, converts it back into a voltage
 - » Uses internal digital circuits to figure out what to do with it
- Router transmits the message to its antenna
- Computer 2 receives the signal on its antenna, converts it back to a (digital) signal

D THE OHIO STATE UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Fiber optics

- Computer 1 converts the electrical signal to an optical signal
- Transmitted via fiber to next computer (or router)
- Receiving device converts light back to electricity
- Thus all inter-device communication is fundamentally based on electrical signals

Digital vs Analog

 Digital: Voltage can be one of a fixed number of voltage quantities:

- Analog: Voltage can be any voltage in a range
 - » Say, -10V to 10V

https://www.elprocus.com/differences-between-analog-signal-and-digital-

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

https://www.technologyuk.net/telecommunications/telecomprinciples/analogue-signals.shtml 6

Analog

- The voltage is an "analog" for the information
 - » E.g. temperature probe
 - » The voltage is proportional to the temperature measured
 - Or some other representation, for example the output could be proportional to the temperature squared- but it contains the information; you can get the temperature from the voltage if you know the representation

THE OHIO STATE UNIVERSITY

Digital

 Digital: Voltage can be one of a fixed number of voltage quantities:

- This one has 8 distinct levels
- In computers, is always 2 levels (binary)

https://www.elprocus.com/differences-between-analog-signal-and-digital-

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

https://www.technologyuk.net/telecommunications/telecomprinciples/analogue-signals.shtml 8

How do you represent a number with electricity?

- Suppose you want to send the number "6"
- In analog system, you
 could send a voltage of 6
 volts
 - » Or, if you want to send "600" you could agree that whatever voltage you send, multiply it by 100, then send 6 V

F ELECTRICAL AND COMPUTER ENGINEERING

In digital (binary), can only send one of two voltages

- Can send 0V and +5V (for example)
 - » Call it "low" and "high"
 - » "False" or "true"
 - » "No" or "yes"
 - » "0" or "1"
- Need to represent "6" as a sequence of voltage values

- Suppose we agree that the sequence "110" means the number "6"
- Could send three pulses

Or you could have parallel wires

11

Analog: what you actually send The voltage is an "analog" to the message you want to send

Digital: for us in this class, the information we want to send

More about analog vs digital

Analog (continuous)

Sampling J High sampling Jow sampling

This course

Digital systems

» Data processing, controls, communication

Our systems will be binary

» Digital systems don't have to be binary

Digital logic

Digital system design

System Design
Logic Design
Circuit Design

System Design: example microwave controller

Break the system down into subsystems

- » Clock
- » Keypad input
- » Control power level
- » Control plate rotation
- » etc

Logic design

- Design of how logic gates and flip-flops are connected to perform a logical function
 - » E.g., IF the power level is set AND the time is set AND the door is closed, start the microwaves and start the plate rotating
 - » IF the power level is set AND the time is NOT set, display an error message (state of door=don't care)

Circuit Design

Transistors, diodes, etc that make up the logic gates and flipflops

THE OHIO STATE UNIVERSITY

We will focus on logic design

We will study switching circuits

» Combinational: outputs depend only on the current state of the inputs

- » Sequential: outputs depends on current inputs and also previous values
 - Has to have some "memory" to know what has happened before
 - In general is a combinational circuit combined with some memory elements

Combinational Circuits

- For a given problem, start with a table or some equations to describe what we want the circuit to do
 - » Given a set of inputs, for each possible combination of states (voltages) at those input, what should the output(s) be?
- Figure out the most efficient way to implement that logic (fewest circuits)
- Then implement using various kinds of circuits (logic gates)

The Ohio State University

Sequential Circuits

- Basic memory element is a flip-flop
- Second half of course we'll look at these
- We'll create tables or graphs to show what system should do
- Then convert to circuits using flip-flops and logic gates
- Learn Hardware Description Language (VHDL) to simulate digital hardware (you'll do this in the lab)

The Ohio State University

All of our circuits will be binary

Inputs and outputs can only assume one of two states: 0 or 1, true or false, high or low, blue or slippery, whatever you want to call them...

So we need to talk about how to represent numbers/ information with binary signals

Start with number systems and conversion

Section 1.2 coming right up

