
Asymptotic Analysis (Ch. 3 from Cormen)

When we talk about running time, we will use asymptotic analysis. The
following definitions are crucial. Burn them into your memory:

Definition 0.1. Let F be the set of functions from R+ to R+.
Let g ∈ F . Then

1. O(g(n)) = {f ∈ F : ∃c, n0 > 0,∀n ≥ no, f(n) ≤ cg(n)}

2. Ω(g(n)) = {f ∈ F : ∃c, n0 > 0,∀n ≥ no, f(n) ≥ cg(n)}

3. Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

We use these in the following way:
For functions f, g : R+ → R+, we write

• f(n) = O(g(n)) to mean that f grows no faster than g, i.e. the growth
of g is an upper bound to the growth of f .

• f(n) = Ω(g(n)) to mean that f grows at least as fast as g, i.e. g is a
lower bound to the growth of f .

• f(n) = Θ(g(n)) to mean that f grows as fast as g.

Here are two more definition, also worth memorizing:

Definition 0.2. Let F be the set of functions from R+ to R+. Let g ∈ F .
Then

1. o(g(n)) = O(g(n)) \Θ(g(n))

2. ω(g(n)) = Ω(g(n)) \Θ(g(n))

We use these in the following way:
For functions f, g : R+ → R+, we write

• f(n) = o(g(n)) to mean that f grows noticeably slower than g.

• f(n) = ω(g(n)) to mean that f grows noticeably faster than g.
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The following theorem is useful for when we have a good understanding of
how a function grows:

Theorem 0.3. Let f, g : R+ → R+ be monotonically increasing, i.e for all
a, b ∈ R+ with a < b we have that

f(a) ≤ f(b)

and
g(a) ≤ g(b).

Then

1. If lim
n→∞

f(n)
g(n) = 0 then f(n) = o(g(n)).

2. If lim
n→∞

f(n)
g(n) = c > 0 then f(n) = Θ(g(n)).

3. If lim
n→∞

f(n)
g(n) =∞ then f(n) = ω(g(n)).

Proof. By authority.

To use this theorem, you have to be able to solve limits. Remember L’Hopitals
rule from calculus:

lim
x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)

We also have the following helpful lemma:

Lemma 0.4. Let f, g : R+ → R>1 be monotonically increasing.
If f(n) = O(g(n)) then ln(f(n)) = O(ln(g(n))).

Proof. Let f, g : R+ → R>1 be monotonically increasing functions such that
f(n) = O(g(n)).
So there exists c, n0 > 0 such that ∀n > n0, f(n) ≤ cg(n).
ln(x) is monotonically increasing, so for all 0 < a ≤ b we have that

ln(a) ≤ ln(b).

Therefore, for all n ≥ n0, we have that

ln(f(n)) ≤ ln(cg(n)) for all n ≥ n0
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Case 1: c ≤ 1.
Then ln(c) ≤ 0.
So

ln(f(n)) ≤ ln(cg(n)) for all n ≥ n0

= ln(c) + ln(g(n))

≤ ln(g(n)) for all n ≥ n0

Case 2: c > 1.
Then ln(c) > 0.
Case 2.1: There exists m0 > 0 such that ∀n ≥ m0, ln(g(n)) ≥ 1.

Then we have

ln(f(n)) ≤ ln(c) + ln(g(n)) for all n ≥ n0

≤ ln(c) ln(g(n)) + ln(g(n)) for all n ≥ max{n0,m0}
= (ln(c) + 1) ln(g(n)) for all n ≥ max{n0,m0}

Case 2.2: ∀n > 0, ln(g(n)) < 1.
Since g(n) : R+ → R>1 is monotonically increasing we have that

1 < g(1) ≤ g(n) for all n > 1

therefore
0 < ln(g(1)) ≤ ln(g(n)) for all n > 1.

there

1 ≤ ln(g(n))

ln(g(1))
for all n > 1.

Therefore,

ln(f(n)) ≤ ln(c) + ln(g(n)) for all n ≥ n0

≤ ln(c)
ln(g(n))

ln(g(1))
+ ln(g(n)) for all n ≥ n0

=

(
ln(c)

ln(g(1))
+ 1

)
ln(g(n)) for all n ≥ n0
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Conclusion: Letting

c′ = max

{
1, 1 + ln(c),

ln(c)

ln(g(1))
+ 1

}
and

n′0 = max{n0,m0}
we have that ln(f(n)) ≤ c′ ln(g(n)) for all n > n′0.
Therefore, ln(f(n)) = O(ln(g(n))).

This lemma will be useful to us because it gives a necessary condition for
f(n) = O(g(n)) that we can take advantage of in proof by contradiction.
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