Asymptotic Analysis (Ch. 3 from Cormen)

When we talk about running time, we will use asymptotic analysis. The
following definitions are crucial. Burn them into your memory:

Definition 0.1. Let F be the set of functions from RT to R*.
Let g € F. Then

1. O(g(n)) ={f € F:3c,ng > 0,Yn > n,, f(n) <cg(n)}

2. Q(g(n)) ={f € F:3c,ng >0,Yn >n,, f(n) >cg(n)}

5. ©(g(n)) = O(g(n)) N Q(g(n))

We use these in the following way:
For functions f, g : R™ — R, we write

e f(n)=0(g(n)) to mean that f grows no faster than g, i.e. the growth
of ¢ is an upper bound to the growth of f.

e f(n) = Q(g(n)) to mean that f grows at least as fast as g, i.e. g is a
lower bound to the growth of f.

e f(n)=0(g(n)) to mean that f grows as fast as g.
Here are two more definition, also worth memorizing:

Definition 0.2. Let F be the set of functions from RT to RT. Let g € F.
Then

1. o(g(n)) = O(g(n)) \ ©(g(n))
2. w(g(n)) = Qg(n)) \ B(g(n))

We use these in the following way:
For functions f, g : R™ — RT, we write

e f(n)=o0(g(n)) to mean that f grows noticeably slower than g.

e f(n)=w(g(n)) to mean that f grows noticeably faster than g.



The following theorem is useful for when we have a good understanding of
how a function grows:

Theorem 0.3. Let f,g : Rt — R™ be monotonically increasing, i.e for all
a,b € R™ with a < b we have that

fla) < f(b)
and
g(a) < g(b)
Then
1. If lim L% = 0 then f(n) = o(g(n)).

n—oo 9(n)

2. If lim % =c¢ >0 then f(n) = O(g(n)).

n—oo 9(1)

3. If lim % = oo then f(n) =w(g(n)).

n—oo 9(1)

Proof. By authority. []

To use this theorem, you have to be able to solve limits. Remember L.’Hopitals
rule from calculus: /
f(z) f'(x)

lim —= = lim
T—00 g(x) T—00 g’(x)

We also have the following helpful lemma:

Lemma 0.4. Let f,g: R — R be monotonically increasing.
If f(n) = O(g(n)) then In(f(n)) = O(In(g(n))).
Proof. Let f,g: R™ — R.; be monotonically increasing functions such that

f(n) = O(g(n)).
So there exists ¢, ng > 0 such that Vn > ng, f(n) < cg(n).
In(z) is monotonically increasing, so for all 0 < a < b we have that

In(a) < In(b).
Therefore, for all n > ng, we have that

In(f(n)) <lIn(cg(n)) for all n > ng



Case 1: ¢ < 1.
Then In(c) < 0.

S0
In(f(n)) <ln(cg(n)) for all n > ng
= In(c) + In(g(n))
<In(g(n)) for all n > ng

Case 2: ¢ > 1.
Then In(c) > 0.
Case 2.1: There exists mg > 0 such that ¥n > mg,In(g(n)) > 1.

Then we have

In(f(n)) <lIn(c) 4+ In(g(n)) for all n > ng
<In(c)In(g(n)) + In(g(n)) for all n > max{ng, mo}
= (In(c) + 1) In(g(n)) for all n > max{ngy, mo}

Case 2.2: Vn > 0,In(g(n)) < 1.
Since g(n) : R* — R4 is monotonically increasing we have that

1 <g(1) <g(n)foralln>1

therefore
0 <In(g(1)) <lIn(g(n)) for all n > 1.
here
t 1< In(g(n)) for all n > 1
~ In(g(1)) |
Therefore,
In(f(n)) <In(c) 4+ In(g(n)) for all n > ng
< In(c) lllrll((zi?lz)))) + In(g(n)) for all n > nyg
_ () n(g(n oralln>n
~ (i ) mion forattn



Conclusion: Letting

1
¢ = max {1, 1+ 1In(e), n(c) + 1}

and
ny = max{ng, mo}
we have that In(f(n)) < d'In(g(n)) for all n > ny.
Therefore, In(f(n)) = O(In(g(n))). O

This lemma will be useful to us because it gives a necessary condition for
f(n) = O(g(n)) that we can take advantage of in proof by contradiction.



