
Adam Gluck CSE 2321 Final

Graph Data Structures

Adjacency Matric

• Space: 𝛩(|𝑉|2)

• Lookup for edge takes constant time

• Useful Matrix Operations

Adjacency List

• Space: 𝛩(|𝑉| + |𝐸|)

• Fast lookup for neighbors of vertex

Vocabulary

Directed Graph

• Tree Edge: (u,v) is a tree edge if 𝑣. 𝜋 = 𝑢

• Back Edge: (u,v) is a back edge if v is an ancestor
of u

– Needed for graph to have cycles

• Forward Edge: (u,v) is a forward edge if u is an
ancestor of and (u, v) is not a tree edge

• Cross Edge: All other edges are cross Edges

Undirected Graph

• Tree Edge: (u,v) is a tree edge if 𝑣. 𝜋 = 𝑢 or 𝑢. 𝜋 =
𝑣

• Back Edge: (u,v) is a back edge if v is an ancestor
of u or if u is an ancestor of v

Breadth First Search

Uses

1. Distance between two vertices.

2. Distance between a source and all vertices.

3. Distance between all pairs of vertices.

4. Determine if a graph is bipartite.

5. Determine the number of connected components

6. 𝛩(|𝑉| + |𝐸|) traversal

Pseudocode
BFS(G,root):
 frontier = new Queue();
 root.distance = 0
 frontier.push(root);
 for (w != root) w.distance = ∞;

 while (frontier not empty):
 v = frontier.dequeue();
 for (w successor of v):
 if (w.distance == ∞):
 frontier.enqueue(w);
 w.distance = v.distance + 1;

Depth First Search

Uses

1. Detecting cycle in a graph

2. Path Finding

3. Topological Sorting

4. Determine if a graph is bipartite.

5. Finding Strongly Connected Components of a
graph

6. 𝛩(|𝑉| + |𝐸|) traversal

Pseudocode
DFS(G):
 for each u ∈ V
 u.color = white
 u.π = nil
 time = 0
 for each u ∈ V
 if u.color = white
 Visit(G, u)
// Recursive
Visit(G, u):
 time = time + 1
 u.d = time
 u.color = gray
 for each v ∈ G.Adj[u]
 if v.color = white
 v.π = u
 Visit(G, v)
 u.color = black
 time = time + 1
 u.f = time

// Stack
Visit(G, u)
 let s be a stack
 s.push(u)
 while s is not empty
 w = s.pop()
 if w.color = white
 time = time + 1
 w.d = time
 w.color = gray
 s.push(w)
 for each v ∈ G.Adj[w]
 if v.color = white
 v.π = w
 s.push(v)
 if w.color = gray
 w.color = black
 time = time + 1
 w.f = time

Parameters

• v.𝜋: Parent of v, used to recover order DFS visited
vertices

• v.d: Discovery time of v, time when vertex is first
found by algorithm

• v.f: Finishing time of v, time when vertex is
processed by algorithm

• v.color

– White: node is undiscovered

– Gray: node is discovered and being
processed

• Black: node has been visited and is finished
processing

Topological Sort

• Requires directed graph is directed and has no
nontrivial cycles (Acrylic graph)

• Returns an ordered list of nodes where no edges
point backwards

• Runtime is 𝛩(|𝑉| + |𝐸|)

Algorithm

1. Call DFS(G) to compute finishing times for each
vertex

– Check for cycles can be added by checking
if w is gray in Visit function

2. Return list of nodes sorted by finishing time in
reverse order

Strongly Connected Components

• A directed graph is strongly connected if for any
𝑥, 𝑦 ∈ 𝑉 there is a path from x to y and a path from
y to x

• Runs in 𝛩(|𝑉| + |𝐸|)

Algorithm

1. Pick a vertex v ∈ V and use DFS to check if every
vertex can be reached from v. If not, return false.

2. Compute 𝐺𝑇, the transpose graph of G.

3. Do DFS in 𝐺𝑇 to check if every vertex can be
reached from v. If not, return false. Otherwise,
return true

Planar Graphs

• A graph is planar if it has a planar embedding

• A planar embedding is a way to draw a graph so
no edges cross

• Planar graphs divide the plane they are drawn on
into regions called faces

Euler’s polyhedral formula

1. let v = |V|, e = |E|, and f = the number of faces

2. v − e + f = 2 for all connected planar graphs

Two Color Algorithm

• Colors graph nodes with one of two colors and
returns whether the graph is bipartite

• Runs is 𝛩(|𝑉| + |𝐸|)
Bipartite(G)
 bipartite = true
 for each v in V
 v.color = None
 for each v in V
 if v.color = None
 bipartite = bipartite and
two_color(G,v)
 return bipartite

two_color(G,s)

 s.color = 0
 q.enqueue(s)
 while q.length != 0
 v = q.dequeue()
 for each w s.t. {v,w} in E
 if w.color = v.color
 return false
 else if w.color = None
 w.color = (v.color + 1) mod 2
 q.enqueue(w)
 return true

Hamiltonian Cycle Check
1. Iterate over all n! possible orderings of vertices.

For each ordering check to see if it is a
Hamiltonian cycle by checking if the vertices are
connected by an edge

2. Modify DFS to explore all possible paths. For
example, instead of coloring vertices black they
are colored white so that vertices can be “re-
explored” after DFS backtracks

Universal Sink Check

• Start in the top left of the matrix. If it contains a 0,
move to the right, if it contains a 1, move down.
Continue this process until there are no more
rows or columns to move to. The row and column
you end in need to be checked to see if the
corresponding vertex is a universal sink. This
process works because if A[i][j] = 1, then i cannot
be a universal sink because it has an outgoing
edge. If A[i][j] = 0, then j cannot be a universal sink
because there is no edge from i to j

• Runs in 𝛩(|𝑉|)

Compute diameter of graph

• Do BFS from each vertex, this gives you the
shortest distance for all pairs. Then find the max
distance over all pairs.

• Runs in 𝛩(|𝑉|2 + |𝑉||𝐸|)

Transpose Directed Graph

• It is enough to iterate through each row/list of the
data struc- ture and add the revered edges to a
new data structure. This would result in time O(|V
|2) for the adjacency matrix and time O(|V | + |E|)
for the adjacency list

