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Graph Data Structures 

Adjacency Matric 

• Space: 𝛩(|𝑉|2) 

• Lookup for edge takes constant time 

• Useful Matrix Operations 

Adjacency List 

• Space: 𝛩(|𝑉| + |𝐸|) 

• Fast lookup for neighbors of vertex 

Vocabulary 

Directed Graph 

• Tree Edge: (u,v) is a tree edge if 𝑣. 𝜋 = 𝑢 

• Back Edge: (u,v) is a back edge if v is an ancestor 
of u 

– Needed for graph to have cycles 

• Forward Edge: (u,v) is a forward edge if u is an 
ancestor of and (u, v) is not a tree edge 

• Cross Edge: All other edges are cross Edges 

Undirected Graph 

• Tree Edge: (u,v) is a tree edge if 𝑣. 𝜋 = 𝑢 or 𝑢. 𝜋 =
𝑣 

• Back Edge: (u,v) is a back edge if v is an ancestor 
of u or if u is an ancestor of v 

Breadth First Search 

Uses 

1. Distance between two vertices. 

2. Distance between a source and all vertices. 

3. Distance between all pairs of vertices. 

4. Determine if a graph is bipartite. 

5. Determine the number of connected components 

6. 𝛩(|𝑉| + |𝐸|) traversal 

Pseudocode 
BFS(G,root): 
    frontier = new Queue(); 
    root.distance = 0 
    frontier.push(root); 
    for (w != root) w.distance = ∞; 
 
    while (frontier not empty): 
        v = frontier.dequeue(); 
        for (w successor of v): 
            if (w.distance == ∞): 
                frontier.enqueue(w); 
                w.distance = v.distance + 1; 

Depth First Search 

Uses 

1. Detecting cycle in a graph 

2. Path Finding 

3. Topological Sorting 

4. Determine if a graph is bipartite. 

5. Finding Strongly Connected Components of a 
graph 

6. 𝛩(|𝑉| + |𝐸|) traversal 

Pseudocode 
DFS(G): 
    for each u ∈ V 
        u.color = white 
        u.π = nil 
    time = 0 
    for each u ∈ V 
        if u.color = white 
            Visit(G, u) 
// Recursive 
Visit(G, u): 
    time = time + 1 
    u.d = time 
    u.color = gray 
    for each v ∈ G.Adj[u] 
        if v.color = white 
            v.π = u 
            Visit(G, v) 
    u.color = black 
    time = time + 1 
    u.f = time 
 
// Stack 
Visit(G, u) 
    let s be a stack 
    s.push(u) 
    while s is not empty 
        w = s.pop() 
        if w.color = white 
            time = time + 1 
            w.d = time 
            w.color = gray 
            s.push(w) 
            for each v ∈ G.Adj[w] 
                if v.color = white 
                    v.π = w 
                    s.push(v) 
        if w.color = gray 
            w.color = black 
            time = time + 1 
            w.f = time 

Parameters 

• v.𝜋: Parent of v, used to recover order DFS visited 
vertices 

• v.d: Discovery time of v, time when vertex is first 
found by algorithm 

• v.f: Finishing time of v, time when vertex is 
processed by algorithm 

• v.color 

– White: node is undiscovered 

– Gray: node is discovered and being 
processed 



• Black: node has been visited and is finished 
processing 

Topological Sort 

• Requires directed graph is directed and has no 
nontrivial cycles (Acrylic graph) 

• Returns an ordered list of nodes where no edges 
point backwards 

• Runtime is 𝛩(|𝑉| + |𝐸|) 

Algorithm 

1. Call DFS(G) to compute finishing times for each 
vertex 

– Check for cycles can be added by checking 
if w is gray in Visit function 

2. Return list of nodes sorted by finishing time in 
reverse order 

Strongly Connected Components 

• A directed graph is strongly connected if for any 
𝑥, 𝑦 ∈ 𝑉 there is a path from x to y and a path from 
y to x 

• Runs in 𝛩(|𝑉| + |𝐸|) 

Algorithm 

1. Pick a vertex v ∈ V and use DFS to check if every 
vertex can be reached from v. If not, return false. 

2. Compute 𝐺𝑇, the transpose graph of G. 

3. Do DFS in 𝐺𝑇 to check if every vertex can be 
reached from v. If not, return false. Otherwise, 
return true 

Planar Graphs 

• A graph is planar if it has a planar embedding 

• A planar embedding is a way to draw a graph so 
no edges cross 

• Planar graphs divide the plane they are drawn on 
into regions called faces 

Euler’s polyhedral formula 

1. let v = |V|, e = |E|, and f = the number of faces 

2. v − e + f = 2 for all connected planar graphs 

Two Color Algorithm 

• Colors graph nodes with one of two colors and 
returns whether the graph is bipartite 

• Runs is 𝛩(|𝑉| + |𝐸|) 
Bipartite(G) 
    bipartite = true  
    for each v in V 
        v.color = None 
    for each v in V  
        if v.color = None 
            bipartite = bipartite and 
two_color(G,v) 
    return bipartite 
 
two_color(G,s) 

    s.color = 0 
    q.enqueue(s) 
    while q.length != 0 
        v = q.dequeue() 
        for each w s.t. {v,w} in E 
            if w.color = v.color 
                return false 
            else if w.color = None 
                w.color = (v.color + 1) mod 2 
                q.enqueue(w) 
    return true  

Hamiltonian Cycle Check 
1. Iterate over all n! possible orderings of vertices. 

For each ordering check to see if it is a 
Hamiltonian cycle by checking if the vertices are 
connected by an edge 

2. Modify DFS to explore all possible paths. For 
example, instead of coloring vertices black they 
are colored white so that vertices can be “re-
explored” after DFS backtracks 

Universal Sink Check 

• Start in the top left of the matrix. If it contains a 0, 
move to the right, if it contains a 1, move down. 
Continue this process until there are no more 
rows or columns to move to. The row and column 
you end in need to be checked to see if the 
corresponding vertex is a universal sink. This 
process works because if A[i][j] = 1, then i cannot 
be a universal sink because it has an outgoing 
edge. If A[i][j] = 0, then j cannot be a universal sink 
because there is no edge from i to j 

• Runs in 𝛩(|𝑉|) 

Compute diameter of graph 

• Do BFS from each vertex, this gives you the 
shortest distance for all pairs. Then find the max 
distance over all pairs. 

• Runs in 𝛩(|𝑉|2 + |𝑉||𝐸|) 

Transpose Directed Graph 

• It is enough to iterate through each row/list of the 
data struc- ture and add the revered edges to a 
new data structure. This would result in time O(|V 
|2) for the adjacency matrix and time O(|V | + |E|) 
for the adjacency list 


