
Adam Gluck  CSE 2321 Exam 2 

Log Rules 
• log(𝑎𝑏) = log(𝑎) + log(𝑏) 

• log (
𝑎

𝑏
) = log(𝑎) − log(𝑏) 

• log(𝑎𝑘) = 𝑘log(𝑎) 

• log(1) = 0 

• log𝑏(𝑏) = 1 

• log𝑏(𝑏
𝑘) = 𝑘 

• 𝑏log𝑏(𝑘) = 𝑘 

• log𝑏(𝑎) =
log𝑑(𝑎)

log𝑑(𝑏)
 

Summation Identities 
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  𝑟 ≠ 1

 

Asymptomatic Analysis Definitions 
• 𝑓(𝑛) = 𝑂(𝑔(𝑛)) 

– 𝑂(𝑔(𝑛)) = {𝑓 ∈ ℱ: ∃𝑐, 𝑛𝑜 > 0, ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤

𝑐𝑔(𝑛)} 

– f grows no faster than g, i.e. the growth of g is 
an upper bound to the growth of f. 

• 𝑓(𝑛) = 𝛺(𝑔(𝑛)) 

– 𝛺(𝑔(𝑛)) = {𝑓 ∈ ℱ: ∃𝑐, 𝑛𝑜 > 0, ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≥

𝑐𝑔(𝑛)} 

– f grows at least as fast as g, i.e. g is a lower 
bound to the growth of f. 

• 𝑓(𝑛) = 𝛩(𝑔(𝑛)) 

– 𝛩(𝑔(𝑛)) = 𝑂(𝑔(𝑛)) ∩ 𝛺(𝑔(𝑛)) 

– The set of 𝑓(𝑛) where f grows as fast as g 

• 𝑓(𝑛) = 𝑜(𝑔(𝑛)) 

– 𝑜(𝑔(𝑛)) = 𝑂(𝑔(𝑛))\𝛩(𝑔(𝑛) 

– f grows noticeably slower than g 

• 𝑓(𝑛) = 𝜔(𝑔(𝑛)) 

– 𝜔(𝑔(𝑛)) = 𝛺(𝑔(𝑛))\𝛩(𝑔(𝑛) 

– f grows noticeably faster than g 

 
Upper Bound / Lower Bound Method Examples 

• 𝑓(𝑛) = 3𝑛+1 + 5𝑛4 

Upper Bound 

3𝑛+1 + 5𝑛4 ≤ 3𝑛+1 + 5(3𝑛+1)

= 3 ∗ 3𝑛 + 15 ∗ 3𝑛

= 18 ∗ 3𝑛

= 𝑂(3𝑛)

 

Lower Bound 

3𝑛+1 + 5𝑛4 ≥ 3𝑛+1

= 3 ∗ 3𝑛

= 𝛺(3𝑛)
 

Limit Method 
Let f and g be monotonically increasing 

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
{

0 then𝑓(𝑛) = 𝑂(𝑔(𝑛))

𝑐 > 0 then𝑓(𝑛) = 𝛩(𝑔(𝑛))

∞ then𝑓(𝑛) = 𝛺(𝑔(𝑛))

} 

Helpful Lemma 

If 𝑓(𝑛) = 𝑂(𝑔(𝑛)) then ln(𝑓(𝑛)) = 𝑂 (ln(𝑔(𝑛))). 

For Loop Examples 
Function T1(n): 
x = 0 
for i=1 to n do 
    for j=1 to i do 
        x = x + (i-j) 
end 

𝑇2(𝑛) = ∑(∑1

𝑎

𝑏=1

)

𝑛

𝑎=1

= ∑𝑎

𝑛

𝑎=1

=
𝑛(𝑛 + 1)

2
= 𝛩(𝑛2) 

Function T2(n): 
x = 0 
for i=1 to n do 
    for j=1 to √n do 
        x = x + (i-j) 
end 

*Note 𝑛⌊√𝑛⌋ ≤ 𝑛√𝑛 

𝑇2(𝑛) = ∑∑1

√𝑛

𝑏=1

𝑛

𝑎=1

= ∑√𝑛

𝑛

𝑎=1

= 𝑛√𝑛 = 𝛩(𝑛1.5) 

While Loop Examples 
Function T3(n): 
x = 0 
i = 1 
while i < n do 
    x = (x + 1)^2 
    i = 2i 
end 

*k is number of iterations 

𝑖 = 1 ∗ 2𝑘 < 𝑛
lg(2𝑘) < lg(𝑛)

𝑘 < lg(𝑛)
 

𝑇3(𝑛) = ∑ 1

lg(𝑛)

𝑎=1

= lg(𝑛) = 𝛩(lg(𝑛)) 



 
For and While Loop Examples 
Function T4(n): 
for i = 1 to n do 
    j = 1 
    while j < n do 
        x = (x + 1)^2 
        j = 2j 
end 

𝑗 = 2𝑘 < 𝑛

lg(2𝑘) < lg(𝑛)

𝑘 < lg(𝑛)

 

𝑇4(𝑛) = ∑ ∑ 1

lg(𝑛)

𝑏=1

𝑛

𝑎=1

= ∑lg

𝑛

𝑎=1

(𝑛) = 𝑛lg(𝑛) = 𝛩(𝑛lg(𝑛)) 

Recursion Trees 
Expression 

𝑇(𝑛) = 2𝑇(𝑛 − 1) + 1 ∀𝑛 > 1

𝑇(1) = 1
 

General Expression 
𝑇(𝑛) = 2𝑇(𝑛 − 1) + 1

= 2(2𝑇(𝑛 − 2) + 1) + 1

= 2(2(2𝑇(𝑛 − 3) + 1) + 1) + 1

= 23𝑇(𝑛 − 3) + 4 + 2 + 1

𝑇(𝑛) = 2𝑘+1𝑇(𝑛 − (𝑘 + 1)) +∑2𝑖
𝑘

𝑖=0

 

Find Number of Expansions 
𝑛 − (𝑘 + 1) = 1

𝑘 = 𝑛 − 2
 

Solve Runtime 

𝑇(𝑛) = 2𝑛−2+1𝑇(𝑛 − (𝑛 − 2 + 1)) +∑2𝑖
𝑛−2

𝑖=0

= 2𝑛−1𝑇(1) +∑2𝑖
𝑛−2

𝑖=0

= 2𝑛−1 +
1 − 2𝑛−1

1 − 2
= 2𝑛−1 + 2𝑛−1 − 1
= 2𝑛 − 1

𝑇(𝑛) = 𝛩(2𝑛)

 

Recurrence Relation From Code 
𝑇(𝑛) = 𝑓(𝑛)𝑇(𝑔(𝑛)) + ℎ(𝑛) 

1. f(n) is the number of recursive calls that will happen 
(f(n) = 1 or 2 for most algorithms you will see) 

2. g(n) describes how the size of the problem changes 
from one call to the next 

3. h(n) describes the amount of work happening before 
and after the recursive calls 

Example 
int BinarySearch(Array, low, high, value) 
    if low>high 
        index = −1 
    else 
        midpt = (low+high)/2 
        if value = Array[midpt] 
            index = midpt 

        else if k < Array[midpt] 
            index = BinarySearch(Array, low, midpt − 1 
, value) 
        else 
            index = BinarySearch(Array, midpt + 1, 
high, value) 
    return index 

𝑇(𝑛) = 𝑇(𝑛/2) + 𝑐

𝑇(𝑛) = 1 𝑛 < 1
 

Sorting Algorithms 
A sorting algorithm is any algorithm which solves this problem: 

Input A sequence of 𝑛 numbers 𝑎1, 𝑎2, . . . , 𝑎𝑛 

Output A permutatuion 𝑎1′, 𝑎2′, . . . , 𝑎𝑛′ of the input sequence 
such that 𝑎1′ ≤ 𝑎2′ ≤. . . ≤ 𝑎𝑛′ 

A stable sort conserves the relative order of the input when 
possible 

Comparison Sort 
InsertionSort(A) 
for j = 2 to A.length 
    key = A[j] 
    i = j − 1 
    while i > 0 and A[i] > key 
        A[i + 1] = A[i] 
        i = i − 1 
    A[i + 1] = key 

Best Case: A is already sorted. Runtime is 𝛩(𝑛) 

Worst Case: A is in reverse order, Runtime is 𝛩(𝑛2) 

Merge Sort 
• Divide Divide the n-element sequence into two 

subsequence of (roughly) n/2 elements each. 

• Conquer Sort the two subsequences recursively 

• Combine Merge the two sorted subsequence to get the 
complete sorted sequence. 

Runtime: 𝛩(𝑛log(𝑛)) 

Counting Sort 
• Let k be the max value of array A with integers between 

0 and k 

• Initialize array C with k size 

• Iterate through A and for each element i, increment C[i] 
by 1 

• Iterate through C and for each index j, increment C[j] by 
C[i-1] 

• Iterate through C backwards and for each index k, set 
B[C[A[k]] to A[k] and decrement C[A[k]] by 1 

Runtime 𝛩(𝑛 + 𝑘) 

Radix Sort 
Radix(A,digits): 
  for i = 1 to digits: 
    use a stable sort to sort A on digit i (starting 
from least significant digit) 
    Lets use the counting sort algorithm above as our 
stable sort. 

• Runs in 𝛩(𝑑 ∗ runtime of stable sort used) 


