
Adam Gluck CSE 2321 Exam 2

Log Rules
• log(𝑎𝑏) = log(𝑎) + log(𝑏)

• log (
𝑎

𝑏
) = log(𝑎) − log(𝑏)

• log(𝑎𝑘) = 𝑘log(𝑎)

• log(1) = 0

• log𝑏(𝑏) = 1

• log𝑏(𝑏
𝑘) = 𝑘

• 𝑏log𝑏(𝑘) = 𝑘

• log𝑏(𝑎) =
log𝑑(𝑎)

log𝑑(𝑏)

Summation Identities

∑𝑓

𝑏

𝑖=𝑎

(𝑥) = ∑(𝑥)

𝑏

𝑖=𝑎

+∑(𝑦)

𝑏

𝑖=𝑎

∑𝑓

𝑏

𝑖=𝑎

(𝑥) = ∑𝑓

𝑏

𝑖=0

(𝑥) −∑𝑓

𝑎−1

𝑖=0

(𝑥)

∑(𝑐)

𝑏

𝑖=𝑎

𝑓(𝑖) = 𝑐∑𝑓

𝑎−1

𝑖=0

(𝑖)

∑ 𝑐

𝑛−1

𝑖=0

= 𝑐𝑛

∑ 𝑖

𝑛−1

𝑖=0

=
𝑛(𝑛 − 1)

2

∑𝑎

𝑛−1

𝑖=0

𝑟𝑖 =
𝑎(𝑟𝑛 − 1)

𝑟 − 1
  𝑟 ≠ 1

Asymptomatic Analysis Definitions
• 𝑓(𝑛) = 𝑂(𝑔(𝑛))

– 𝑂(𝑔(𝑛)) = {𝑓 ∈ ℱ: ∃𝑐, 𝑛𝑜 > 0, ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≤

𝑐𝑔(𝑛)}

– f grows no faster than g, i.e. the growth of g is
an upper bound to the growth of f.

• 𝑓(𝑛) = 𝛺(𝑔(𝑛))

– 𝛺(𝑔(𝑛)) = {𝑓 ∈ ℱ: ∃𝑐, 𝑛𝑜 > 0, ∀𝑛 ≥ 𝑛0, 𝑓(𝑛) ≥

𝑐𝑔(𝑛)}

– f grows at least as fast as g, i.e. g is a lower
bound to the growth of f.

• 𝑓(𝑛) = 𝛩(𝑔(𝑛))

– 𝛩(𝑔(𝑛)) = 𝑂(𝑔(𝑛)) ∩ 𝛺(𝑔(𝑛))

– The set of 𝑓(𝑛) where f grows as fast as g

• 𝑓(𝑛) = 𝑜(𝑔(𝑛))

– 𝑜(𝑔(𝑛)) = 𝑂(𝑔(𝑛))\𝛩(𝑔(𝑛)

– f grows noticeably slower than g

• 𝑓(𝑛) = 𝜔(𝑔(𝑛))

– 𝜔(𝑔(𝑛)) = 𝛺(𝑔(𝑛))\𝛩(𝑔(𝑛)

– f grows noticeably faster than g

Upper Bound / Lower Bound Method Examples

• 𝑓(𝑛) = 3𝑛+1 + 5𝑛4

Upper Bound

3𝑛+1 + 5𝑛4 ≤ 3𝑛+1 + 5(3𝑛+1)

= 3 ∗ 3𝑛 + 15 ∗ 3𝑛

= 18 ∗ 3𝑛

= 𝑂(3𝑛)

Lower Bound

3𝑛+1 + 5𝑛4 ≥ 3𝑛+1

= 3 ∗ 3𝑛

= 𝛺(3𝑛)

Limit Method
Let f and g be monotonically increasing

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
{

0 then𝑓(𝑛) = 𝑂(𝑔(𝑛))

𝑐 > 0 then𝑓(𝑛) = 𝛩(𝑔(𝑛))

∞ then𝑓(𝑛) = 𝛺(𝑔(𝑛))

}

Helpful Lemma

If 𝑓(𝑛) = 𝑂(𝑔(𝑛)) then ln(𝑓(𝑛)) = 𝑂 (ln(𝑔(𝑛))).

For Loop Examples
Function T1(n):
x = 0
for i=1 to n do
 for j=1 to i do
 x = x + (i-j)
end

𝑇2(𝑛) = ∑(∑1

𝑎

𝑏=1

)

𝑛

𝑎=1

= ∑𝑎

𝑛

𝑎=1

=
𝑛(𝑛 + 1)

2
= 𝛩(𝑛2)

Function T2(n):
x = 0
for i=1 to n do
 for j=1 to √n do
 x = x + (i-j)
end

*Note 𝑛⌊√𝑛⌋ ≤ 𝑛√𝑛

𝑇2(𝑛) = ∑∑1

√𝑛

𝑏=1

𝑛

𝑎=1

= ∑√𝑛

𝑛

𝑎=1

= 𝑛√𝑛 = 𝛩(𝑛1.5)

While Loop Examples
Function T3(n):
x = 0
i = 1
while i < n do
 x = (x + 1)^2
 i = 2i
end

*k is number of iterations

𝑖 = 1 ∗ 2𝑘 < 𝑛
lg(2𝑘) < lg(𝑛)

𝑘 < lg(𝑛)

𝑇3(𝑛) = ∑ 1

lg(𝑛)

𝑎=1

= lg(𝑛) = 𝛩(lg(𝑛))

For and While Loop Examples
Function T4(n):
for i = 1 to n do
 j = 1
 while j < n do
 x = (x + 1)^2
 j = 2j
end

𝑗 = 2𝑘 < 𝑛

lg(2𝑘) < lg(𝑛)

𝑘 < lg(𝑛)

𝑇4(𝑛) = ∑ ∑ 1

lg(𝑛)

𝑏=1

𝑛

𝑎=1

= ∑lg

𝑛

𝑎=1

(𝑛) = 𝑛lg(𝑛) = 𝛩(𝑛lg(𝑛))

Recursion Trees
Expression

𝑇(𝑛) = 2𝑇(𝑛 − 1) + 1 ∀𝑛 > 1

𝑇(1) = 1

General Expression
𝑇(𝑛) = 2𝑇(𝑛 − 1) + 1

= 2(2𝑇(𝑛 − 2) + 1) + 1

= 2(2(2𝑇(𝑛 − 3) + 1) + 1) + 1

= 23𝑇(𝑛 − 3) + 4 + 2 + 1

𝑇(𝑛) = 2𝑘+1𝑇(𝑛 − (𝑘 + 1)) +∑2𝑖
𝑘

𝑖=0

Find Number of Expansions
𝑛 − (𝑘 + 1) = 1

𝑘 = 𝑛 − 2

Solve Runtime

𝑇(𝑛) = 2𝑛−2+1𝑇(𝑛 − (𝑛 − 2 + 1)) +∑2𝑖
𝑛−2

𝑖=0

= 2𝑛−1𝑇(1) +∑2𝑖
𝑛−2

𝑖=0

= 2𝑛−1 +
1 − 2𝑛−1

1 − 2
= 2𝑛−1 + 2𝑛−1 − 1
= 2𝑛 − 1

𝑇(𝑛) = 𝛩(2𝑛)

Recurrence Relation From Code
𝑇(𝑛) = 𝑓(𝑛)𝑇(𝑔(𝑛)) + ℎ(𝑛)

1. f(n) is the number of recursive calls that will happen
(f(n) = 1 or 2 for most algorithms you will see)

2. g(n) describes how the size of the problem changes
from one call to the next

3. h(n) describes the amount of work happening before
and after the recursive calls

Example
int BinarySearch(Array, low, high, value)
 if low>high
 index = −1
 else
 midpt = (low+high)/2
 if value = Array[midpt]
 index = midpt

 else if k < Array[midpt]
 index = BinarySearch(Array, low, midpt − 1
, value)
 else
 index = BinarySearch(Array, midpt + 1,
high, value)
 return index

𝑇(𝑛) = 𝑇(𝑛/2) + 𝑐

𝑇(𝑛) = 1 𝑛 < 1

Sorting Algorithms
A sorting algorithm is any algorithm which solves this problem:

Input A sequence of 𝑛 numbers 𝑎1, 𝑎2, . . . , 𝑎𝑛

Output A permutatuion 𝑎1′, 𝑎2′, . . . , 𝑎𝑛′ of the input sequence
such that 𝑎1′ ≤ 𝑎2′ ≤. . . ≤ 𝑎𝑛′

A stable sort conserves the relative order of the input when
possible

Comparison Sort
InsertionSort(A)
for j = 2 to A.length
 key = A[j]
 i = j − 1
 while i > 0 and A[i] > key
 A[i + 1] = A[i]
 i = i − 1
 A[i + 1] = key

Best Case: A is already sorted. Runtime is 𝛩(𝑛)

Worst Case: A is in reverse order, Runtime is 𝛩(𝑛2)

Merge Sort
• Divide Divide the n-element sequence into two

subsequence of (roughly) n/2 elements each.

• Conquer Sort the two subsequences recursively

• Combine Merge the two sorted subsequence to get the
complete sorted sequence.

Runtime: 𝛩(𝑛log(𝑛))

Counting Sort
• Let k be the max value of array A with integers between

0 and k

• Initialize array C with k size

• Iterate through A and for each element i, increment C[i]
by 1

• Iterate through C and for each index j, increment C[j] by
C[i-1]

• Iterate through C backwards and for each index k, set
B[C[A[k]] to A[k] and decrement C[A[k]] by 1

Runtime 𝛩(𝑛 + 𝑘)

Radix Sort
Radix(A,digits):
 for i = 1 to digits:
 use a stable sort to sort A on digit i (starting
from least significant digit)
 Lets use the counting sort algorithm above as our
stable sort.

• Runs in 𝛩(𝑑 ∗ runtime of stable sort used)

