
Code Examples

For Loops

Consider the following pseudo-code:
Function f1(n):
x = 0
for i=1 to n do

for j=1 to n do
x = x + (i-j)

end

First, we need to agree upon a “model of computation” in which to do our
analysis.

When we talk about the running time of this code, we basically mean “what
is the total number of operations that will need to be performed to run this
program in our model of computation?”.

This model informs us on how to approximate how many operations each in-
struction takes, and in particular which instructions take constant time and
which don’t. We typically do not formally define the model of computation,
it is instead a loosely agreed upon thing.

In any reasonable model, doing an assignment like “x=0” or “x=1” would be
viewed as taking a fixed number of operations.

But how many operations does it take to execute a statement like
“x = x + (i-j)”?

That depends on the sizes of x, i, j, in particular it depends on the number
of digits.

So a mathematician would NOT consider this to happen with a constant
amount of operations, but a computer scientist could; our program are typi-
cally written using primitive datatypes like int, float, double that have a fixed

1



number of digits.

To exactly capture the running time of f1 in our model of computation, we
would need to include constants for the different amount of time each line
takes when running.

So the exact running time En would look something like this

En = c′ +
n∑

a=1

(
c′′ +

n∑
b=1

(c′′′ + c′′′′)

)

where c′, c′′, c′′′, c′′′′ are non-zero constants that capture the time to execute
“x=0”, maintain the for loops, and execute “x = x + (i-j)”.

Function f1(n):
x = 0
for i=1 to n do

for j=1 to n do
x = x + (i-j)

end

We will instead express the running time (Tn) of this code as

Tn =
n∑

a=1

n∑
b=1

c,

where c > 0 is some constant.

Of course, this does not exactly capture the running time of this code. How-
ever, we can notice there are some constants c1, c2 > 0 such that

c1Tn ≤ En ≤ c2Tn,

and therefore since we are doing an asymptotic analysis, analyzing Tn is suf-
ficient for our purposes.
This is one of the first “shortcuts” asymptotic analysis allows us to take.

2



Therefore, we have

Tn =
n∑

a=1

n∑
b=1

c = c
n∑

a=1

n∑
b=1

1 = c
n∑

a=1

n = cn
n∑

a=1

1 = cn2

and therefore Tn = Θ(n2).

You’ll notice here that the value of c did not matter; in the next examples I
will just use 1 instead of c.

This is another “shortcut” available to us. But be careful with this shortcut,
where the constant appears determines if it matters or if it doesn’t; until you
get some experience and learn to spot the difference it is best to include the
constants.

Next, consider the following code:
Function f2(n):
x = 0
for i=1 to n do

for j=1 to i do
x = x + (i-j)

end
We can express the running time (Tn) of this code as

Tn =
n∑

a=1

(
a∑

b=1

1

)
=

n∑
a=1

a =
n(n + 1)

2
= 0.5n2 + 0.5n

and therefore Tn = Θ(n2).

n2∑
a=1

a2

3



Lets try something a little more complicated:
Function f3(n):
x = 0
for i=1 to n do

for j=1 to
√
n do

x = x + (i-j)
end
We can express the running time (Tn) of this code as

Tn =
n∑

a=1

√
n∑

b=1

1 =
n∑

a=1

√
n =
√
n

n∑
a=1

1 = n
√
n = n1.5.

and therefore Tn = Θ(n1.5).

Lets try something a little more accurate:
Function f4(n):
x = 0
for i=1 to n do

for j=1 to b
√
nc do

x = x + (i-j)
end

Note that here the b
√
nc indicates we are rounding down the square root of n

(to round up, we would use the notation d
√
ne). We can express the running

time (Tn) of this code as

Tn =
n∑

a=1

b
√
nc∑

b=1

1 =
n∑

a=1

b
√
nc = nb

√
nc.

This is not a nice function, so we will want to simplify it further.
Observe that

nb
√
nc ≤ n

√
n

and so nb
√
nc = O(n1.5).

We can also observe that

nb
√
nc ≥ n(

√
n− 1) = n

√
n− n =

1

2
n
√
n +

1

2
n
√
n− n ≥ 1

2
n
√
n

4



for n ≥ 4.
This then tells us that nb

√
nc = Ω(n1.5).

Therefore Tn = Θ(n1.5).

Next examples:
Function f5(n):
x = 0
for i=1 to n2 do

for j=1 to i3 do
x = x + j!!!!

end

Tn =
n2∑
a=1

a3∑
b=1

1

How long does it take to compute j!!!!?
Not really a fair question at this point. Lets just skip this one.

Next example:
Function f6(n):
x = 0
for i=2n to 2n2 + 5n do

for j=1 to i3 + i2 do
x = x + j

end
Our running time can be expressed as

Tn =
2n2+5n∑
a=2n

a3+a2∑
b=1

1

 =
2n2+5n∑
a=2n

(a3 + a2)

Give up on finding equality, but don’t give up on finding upper and lower
bounds.
In this next part I will be using Nicomachus’s Theorem, which tell us that

n∑
i=1

i3 =

(
n∑

i=1

i

)2

5



Upper bound:

2n2+5n∑
a=2n

(a3 + a2) ≤
7n2∑
a=1

(a3 + a2)

≤
7n2∑
a=1

2a3

= 2
7n2∑
a=1

a3

= 2

 7n2∑
a=1

a

2

applying Nichomachus’s Theorem

= 2

(
7n2(7n2 + 1)

2

)2

= polynomial with degree 8

≤ cn8 for some constant c > 0

Therefore, Tn = O(n8).
Lower bound:

6



2n2+5n∑
a=2n

(a3 + a2) ≥
2n2+5n∑
a=2n

a3

≥
2n2+3n∑
a=1

a3

≥
n2∑
a=1

a3

=

 n2∑
a=1

a

2

Nichomachus’s again

=

(
n2(n2 + 1)

2

)2

= polynomial with degree 8

Therefore, Tn = Ω(n8).
Since Tn = O(n8) and Tn = Ω(n8), we can conclude that Tn = Θ(n8).

While Loops

Consider the following code:
Function w1(n):
x = 0
i = 7
while i ≤ n do

x = (x + 1)2

i = i + 1
end
This while loop behaves very much like a for loop, in that it runs until the
counter i reaches n.

7



We can express the running time (Tn) of this code as

Tn =
n∑

a=7

1 = n− 7 + 1,

and since limn→∞
n−6
n = 1 we have Tn = Θ(n).

Next, consider the following code:
Function w2(n):
x = 0
i = 1
while i < n do

x = (x + 1)2

i = i + 3
end
This while loop also behaves very much like a for loop, in that it runs until
the counter i reaches n, but this time the counter increases by 3 each time.
We can express the running time (Tn) of this code as

Tn =

bn/3c∑
a=1

1 = bn/3c,

and therefore Tn = Θ(n).

The next example is much more interesting:
Function w3(n):
x = 0
i = 1
while i < n do

x = (x + 1)2

i = 2i
end
To find the running time, we need to understand how many times the while
loops runs.
This while loop runs as long as i < n, but i is doubling with each iteration.

8



Therefore, if k is the number of iterations of the while loops, the while loop
runs while we have

i = 1 · 2k < n.

We can solve for k by taking the log2 of each side of the inequality:

log2(2
k) < log2(n).

and so k < log2(n).
We can therefore express the running time (Tn) of this code as

Tn =

blog2(n)c∑
a=1

1 = blog2(n)c,

and therefore Tn = Θ(log(n)).

Combinations of for loops and while loops

Function fw1(n):
x = 0
for i = 1 to n do

j = 1
while j < n do

x = (x + 1)2

j = 2j
end

First, lets figure out the number of iterations the while loop will do.

After k iterations, we will have j = 2k.
We can keep iterating as long as j = 2k < n.
Solving for k, we have that there will be blog2(n)c iterations.

Therefore,

Tn =
n∑

a=1

blog2(n)c∑
b=1

1 =
n∑

a=1

blog2(n)c = nblog2(n)c

and so Tn = Θ(n log(n)).

9



Making a small modification, lets analyze this:
Function fw2(n):
x = 0
for i = 1 to n do

j = 1
while j < i do

x = (x + 1)2

j = 2j
end

After k iterations, we will have j = 2k.
We can keep iterating as long as j = 2k < i.
Solving for k, we have that there will be blog2(i)c iterations.

Then

Tn =
n∑

a=1

blog2(a)c∑
b=1

1 =
n∑

a=1

blog2(a)c = blog2(1)c+ blog2(2)c+ . . . blog2(n)c

This is a bit tough, lets give up on equality and find an upper bound:

blog2(1)c+blog2(2)c+ . . . blog2(n)c ≤ log2(1)+log2(2)+ . . . log2(n) = log2(n!)

log2(A) + log2(B) = log2(AB)

Observe that n! ≤ nn, so

log2(n!) ≤ log2(n
n) = n log2(n)

which then tells us that Tn = O(n log(n)).

Can we show that Tn = Ω(n log(n))?

I will leave this as an exercise for you.

10


