
1 Graph Data Structures

Recall that a graph G = (V,E) is a pair of sets, where V is the set of vertices
and E is the set of edges.

Question: How should we represent a graph?
There are two standard ways of representing graphs: The adjacency matrix
and the adjacency list.
For this section, lets let n = |V |.

Adjacency Matrix Let A be a 2-dimensional n× n array, and let

A[i][j] =

{
1 if there is an edge from i to j

0 otherwise

Adjacency List Let A be a 1-dimensional array of n linked lists. Then
the list A[i] contains vertices adjacent to i.

Each of these representations has advantages and disadvantages, depending
on the problem you are trying to solve and the properties of the graph.
For example:
Adjacency Matrix

• Θ(|V |2) space required

• Lookup for a specific
edge takes constant time

• There are useful matrix
operations

Adjacency List

• Θ(|V | + |E|) space re-
quired

• Lookup the neighbors of
a vertex faster

In practice, most graphs are “sparse” (not “dense”), meaning is has few edges.
For example, Facebook has over a billion users, but on average each user has
a few friends, maybe ≤ 1000.
In a graph like this, much less space is required for the adjacency list than
for the adjacency matrix.
Lets play around with the adjacency matrix a little bit

1

Calculate A2

Question: Is A2 interesting?
Question: Is A3 interesting?
Question: Let k be any positive integer, is Ak interesting?

See video for the answers to these questions.

One useful thing we can do with the adjacency matrix is compute the tran-
sitive closure of the graph.

For a directed graph G = (V,E), the transitive closure of G is a directed
graph G∗ = (V,E∗) where

E∗ = {(v, w) : v, w ∈ V and there is a path in G from v to w} .

If A is the adjacency matrix of G and A∗ is the adjacency matrix of G∗, we
can compute A∗ from A by making the following observations:

A0 = I tell us the paths of length 0,

A tells us the paths of length 1,

A2 tells us the paths of length 2,

A3 tells us the paths of length 3, and so on.

Note that we only need to compute up to the (n − 1)-th power, since any
path of length greater than n − 1 would have to contain a repeated vertex,
and thus there would be a shorter path with the same endpoints computed
by one of the earlier powers.
Using this, do we have that

A∗ = I + A + A2 + A3 + . . . + An−1?

Not exactly, some entries in the matrix could have values > 1.
Instead, we have that

A∗ = g(I + A + A2 + A3 + . . . + An−1)

2

where g is a function that sets all values > 1 to 1.
This leads us to the following algorithm:
Algorithm1(A)
M = I
for i = 1 to n− 1 do

M = I + MA
return g(M)
This algorithm has running time Θ(nT (n)), where T (n) is the running time
of the matrix multiplication algorithm we use.
We can speed this algorithm up in the following way:
Algorithm2(A)
M = I + A
for i = 1 to dlog2(n− 1)e do

M = M 2

return g(M)

This algorithm has running time Θ(log(n)T (n)), where T (n) is the running
time of the matrix multiplication algorithm we use, a significant improvement.

3

