1 Graphs (Appx. B.4 from Cormen)

We have two kinds of graphs that we want to discuss, **directed graphs** and **undirected graphs**.

Definition 1.1. A directed graph is an order pair (V, E) of sets such that

 $E \subseteq \{(v, w) : v, w \in V \land v \neq w\}.$

An undirected graph is an ordered pair (V, E) of sets such that

 $E \subseteq \{\{v, w\} : v, w \in V \land v \neq w\}.$

In either case,

- elements of V are called vertices,
- elements of E are called edges.

Question:

What is the maximum number of edges we can have in an undirected graph with n vertices? I.e. let |V| = n, what is the maximum value |E| can have?

Question:

What about a directed graph with n vertices?

Definition 1.2. The degree of a vertex: For an undirected graph $\overline{G} = (V, E)$ for all $v \in V$,

$$deg(v) = |\{w : \{v, w\} \in E\}|$$

For a directed graph G = (V, E) for all $v \in V$,

$$indeg(v) = |\{w : (w, v) \in E\}|$$
$$outdeg(v) = |\{w : (v, w) \in E\}|$$
$$deg(v) = indeg(v) + outdeg(v)$$

Definition 1.3. A path in a graph G = (V, E) is a sequence $v_1, v_2, \ldots, v_k \in V$ such that for all $i \in \{1, 2, \ldots, k-1\}$,

$$(v_i, v_{i+1}) \in E$$

if G is directed, and

$$\{v_i, v_{i+1}\} \in E$$

if G is undirected. The length of the path v_1, v_2, \ldots, v_k is k - 1, the number of edges.

If no vertices are repeated, we say it is a simple path.

Definition 1.4. A cycle in a graph G = (V, E) is a path $v_0, v_1, v_2, \ldots, v_k$ such that $v_0 = v_k$, and the length of this cycle is k. If $v_1, v_2, v_3, \ldots, v_k$ is a simple path, we say $v_0, v_1, v_2, \ldots, v_k$ is a simple cycle.

Definition 1.5. A path is <u>Hamiltonian</u> it includes every vertex exactly once. A cycle is Hamiltonian if it includes every vertex except the starting vertex exactly once.

Definition 1.6. A path or cycle is <u>Eulerian</u> if it includes every edge exactly once.

Definition 1.7. An undirected graph G = (V, E) is <u>connected</u> if for all $x, y \in V$ there is a path in G from x to y.

Theorem 1.8. Let G = (V, E) be a connected undirected graph. If every vertex in V has even degree then G has an Eulerian cycle.

Proof. What is a proof?