
Planar Graphs

Here we are just thinking about undirected graphs, but these notions can be
applied to directed graphs as well.

We say a graph is planar if it has a planar embedding: if there is some
nice way we can draw the vertices and edges in the plane so that none of the
edges cross each other.
It should be easy to draw K4 without crossing edges, so we can conclude it
is planar.
If you spend a little bit of time trying to draw K5 you will quickly convince
yourself that it is not planar, but how can we prove it? We can’t say that
we checked every way of drawing it, because there are an infinite number of
ways to draw it.

To formally prove this, we will need an additional definition. Informally, no-
tice that when we draw a planar graph, this divides the plane into regions.
For example, if we draw a simple cycle, it divides the plane into an interior
and exterior region. We call these regions “faces”.

Thanks to Euler, we have the following formula, which is true for all connected
planar graphs. If v = |V |, e = |E|, and f = the number of faces, then

v − e + f = 2.

To prove Euler’s polyhedral formula, we first need to prove this following fact
about graphs:

Theorem 0.1. If G is a connected graph where all vertices have even degree
then G contains an Eulerian cycle.

Proof. Suppose G = (V,E) is connected and all vertices have even degree.
Consider this algorithm:

1. Color all vertices and edges in G white

2. Select u ∈ V . Color u black.
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3. Staring from u create a path by traveling as far as possible by crossing
white edges. Color each vertex visited black. Color each edge crossed
black.

4. If after (3) there is a black vertex x connected to a white edge, set u = x
and goto (3)

5. Return all the paths made by (3)

Claim 1: Each path found in (3) is actually a cycle.
The path found in (3) only ends once we reach a vertex but have no white
edge to leave on.
Since each vertex has even degree, the only vertex we can end on is the vertex
we started on (each “enter” must be paired with a “leave”).
Claim 2: The union of all the cycles found in (3) will make a Eulerian cycle.
We color the edges black so we don’t reuse them, so an edge can appear in
only one cycle found by (3).
Since the graph is connected each edge will be colored black, so the union of
all cycles contains all of the edges.
So the union of the cycles found in (3) forms an Eulerian cycle.

Now we can prove Euler’s polyhedral formula:

Theorem 0.2. If G is a connected planar graph with v vertices, e edges, and
f faces, then v − e + f = 2.

Proof. Let G = (V,E) be a connected planar graph.
Case 1: G is Eulerian.
Let R be the number of repeated vertices in an Eulerian cycle (note the start-
ing vertex is repeated.
Then f = R + 1, since every repeat “closes” some cycle.
We also have that R = (e + 1)− v, since the cycle visits e + 1 vertices from
start to end.
So f = R + 1 = (e + 1− v) + 1 = e− v + 2.
So v − e + f = 2.
Case 2: G is not Eulerian.
Create a new G′ = (V,E ′) where E ′ has 2 copies of each edge in E.
Let v = |V |, e = |E|, and f be the number of faces in a planar embedding of
G.
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Then in G′, we have
v′ = |V | = v
e′ = |E ′| = 2|E| = 2e
f ′ = f + e
All vertices in G′ have even degree.
So G′ has an Eulerian cycle.
By case 1, we have that

v′ − e′ + f ′ = 2

so
v − 2e + f + e = 2

Therefore,
v − e + f = 2

Using Euler’s polyhedral formula, we can prove the following statements:

Corollary 0.3. K5 is not a planar graph.

Proof. For K5, we have v = |V | = 5 and e = |E| = 10.
Assume (for contradiction) that K5 is planar.
Then e ≤ 3v − 6.
So 10 ≤ 3 · 5− 6 = 9.
→←.
So K5 is not planar.

Corollary 0.4. K3,3 is not a planar graph.

Proof. For K3,3 we have v = |V | = 6 and e = |E| = 9.
Assume (for contradiction) that K3,3 is planar.
All cycles in K3,3 are of length ≥ 4, so each face of K3,3 has degree ≥ 4.
So 4f ≤ 2e, so 2f ≤ e.
From Euler’s formula, we have that 2e− 2v + 4 = 2f .
Therefore,

2e− 2v + 4 ≤ e

e ≤ 2v − 4

9 ≤ 12− 4 = 8
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→←
So K3,3 is not planar.

Lets discuss the Kuratowski/Wagner theorem:

Theorem 0.5. A graph is non-planar ⇔ It contains a K3,3 or K5 minor.

Definition 0.6. Let G and H be graphs. We say that H is a minor of G if
G can be made into H by applying some sequence of the following steps:

1. Delete a vertex

2. Delete an edge

3. Contract an edge, i.e. replace two vertices u, v connected by an edge
with a new vertex u′, and connect u′ to all vertices that were connected
to u and v.

This is a difficult theorem to prove, so we will not prove it. What we should
note is that this surprising theorem tells us about the structural of all planar
graphs in terms of two very simple graphs.
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Coloring Planar Graphs

One application of planar graphs involves coloring maps of countries. Two
countries sharing a border (not a point) must be given different colors. The
natural question is, how many colors do I need to color a given map?
Can translate this to a graph problem in this way:

1. Represent each country as a vertex

2. If two countries share a border, connect their vertices with an edge

This is known as the “dual” of our original map. Because the map is planar,
the dual must also be planar.
Suppose we want to know the maximum number of colors we will need to
color any map?
It is easy to put a lower bound on the maximum number of colors, just
consider a map that has K4 as its dual.
To put a maximum on the number of colors, we first need to deepen our
understanding of planar graphs with this corollary:

Corollary 0.7. If G is a connected planar graph, then G has a vertex of
degree < 6.

Proof. Let G be a connected planar graph with v = |V |, e = |E|, an f faces.
The degree of a face is the length of a boundary walk.
The sum of the degrees of the faces = 2e, since each edge exists in the
boundary between to faces.
Each face must have degree ≥ 3, so 3f ≤ 2e since 3f underestimates the sum
of the degrees of the faces.
Since G is planar, e− v + 2 = f by Euler’s formula, thus

3e− 3v + 6 = 3f ≤ 2e

and so
e ≤ 3v − 6

Case 1: |V | ≤ 2. Then clearly G has a vertex of degree less than 6.
Case 2: |V | ≥ 3.
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Assume (for contradiction) that the degree of each vertex is ≥ 6.
Then

2e =
∑
v∈V

deg(v) ≥ 6v

We have from before that e ≤ 3v − 6, so 2e ≤ 6v − 12.
So 6v ≤ 2e ≤ 6v − 12.
→←
So there must be a vertex with degree < 6.
This ends case 1 and 2, so G has a vertex with degree < 6.

Theorem 0.8. An planar graph can colored with at most 6 colors.

Proof By Induction. Will be doing strong induction on the number of ver-
tices.
Base Case:
The planar graph of 1 vertex has max degree 0, and needs only once color.
Induction Step:
Assume that any planar graph with < k vertices can be colored with 6 colors.
Let G be a planar graph with k vertices.
By corollary 0.7 above, G has a vertex with degree < 6.
Pick such a vertex and call it v.
Let G′ = G v, i.e. the graph with v and any edges connected to v removed.
G′ must be planar, and G′ has k − 1 vertices.
So, by the induction hypothesis, G′ can be colored with 6 colors.
That coloring can then by copied to G, leaving only v uncolored.
Since v has less than 6 neighbors, the neighbors of v have at most 5 unique
colors.
So v can be given the unused 6th color.
Thus, it takes at most 6 colors to color G.

It is time consuming, but not particularly hard, to upgrade this proof and
show we only need at most 5 colors.

In fact, we can even prove that any planar graph only needs 4 colors, but this
proof is even more time consuming!
The 4-color proof was done by Kenneth Appel and Wolfgang Haken in 1976.
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They reduced this problem to check 1482 special cases, and wrote a program
to check all of those cases, making this the first major theorem proven with
computer assistance. This proof is still considered somewhat controversial,
because it is extremely difficult for a human to verify the correctness of the
program and the proof.
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