
Predicate Logic

The weakness of propositional logic:
Some propositions have a very large or even infinite number of cases to check
in order to decide if they are true or false.

“Every student in this class has studied calculus”
There are 40 “variables” I need to check to figure out if this is true or false.

“For every non-negative integer n, we have that n2 + n+ 41 is prime”
To decide this is false I only need to find one integer for which this is not
true, but to decide it is true I need to check an infinite number of cases!

Examples:

“Every map can be colored with 4 colors so that adjacent regions have dif-
ferent colors”
What does this even mean? Need to know exactly what is a map, how many
maps are there, what is a region.

Predicates

These problems lead us to predicate (first order) logic.

Definition 0.1. A predicate is a statement whose truth value depends on
the value of one or more variables.

Example: “n is a perfect square.”

Like propositions we often name predicates with a letter, but also with a
function-like notation to indicate the variables:

Example:

P (n) = “n is a perfect square”

P (n) =

{
True If n is a perfect square

False Otherwise

1



The collection of values that can be plugged into a predicate is called the
universe of discourse.
In theory, the universe of discourse can include everything; people, stars,
potatoes, abstract concepts like numbers, emotions, predicates or functions,
ect.
We will be restricting ourselves to first-order logic, basically meaning that
our universe of discourse includes only individual entities, not groups of en-
tities or relations (this is getting technical).

The kind of statements will want to make later on will be about whether or
everything in our universe of discourse has a property, or just some things
have a property, or nothing has a property, and so on.

We will make these statements using some combination of predicates and two
“quantifiers”.

2



Quantifiers

Our first quantifier is for when we want to talk about a property everything
shares:
Universal Quantifier: ∀

Definition 0.2. Let x be a variable and P (x) be a predicate.
Then we write

∀xP (x)

to say that P (x) is true for everything in our universe of discourse.

Our second quantifier is for when we want to say there is at least one thing
that has the property:
Existential Quantifier: ∃

Definition 0.3. Let x be a variable and P (x) be a predicate.
Then we write

∃xP (x)

to say that P (x) is true for at least one thing in our universe of discourse.

We won’t stop here, we are not quite at the notation mathematicians and
computer scientists like to use.

We often want to limit our universe of discourse, in particular we often want
to just make a statement about integers, or real numbers, or functions.

Rather than hiding this limit in some external context we want to encode it
in the statements we make. We will do this primarily through defining sets.

In a dedicated logic course there would be many steps to take to get to
this; since we don’t have much time, we will skip a few steps and informally
introduce sets now (we will have a more formal discussion of sets in later
lectures).

Definition 0.4. A set is a collection of distinct objects, called elements.
To indicate that x is an element of set S, we write x ∈ S.

3



The kind of statements we will want to make will be about whether or not
elements of a set have some property, or about whether or not the set has
some property.

Examples:
“The cardinality of N is equal to the cardinality of Q”

“For all a and b in R, unless a = b there exists a c in R such that a < c < b”

“There are numbers in N which are only divisible by themselves or 1”

The Typical Use of Quantifiers

Outside of dedicated logic classes/research, this is how you will typically see
these quantifiers used:
Universal Quantifier: ∀

Definition 0.5. Let x be a variable and R(x), P (x) be predicates.
Then we write

∀R(x), P (x)

when we really mean
∀x(R(x) ⇒ P (x))

Existential Quantifier: ∃

Definition 0.6. Let x be a variable and R(x), P (x) be predicates.
Then we write

∃R(x), P (x)

when we really mean
∃x(R(x) ∧ P (x))

4



Free vs Bound Variables

As we build larger statements from smaller ones, it is important to make sure
that all variables are bound by some quantification.

For example, consider this:

∃p ∈ P, ∃q ∈ P, (n = p+ q)

Here we know where p and q come from, but n is undefined - and don’t
let convention trick you, just because we typically use n to mean an integer
doesn’t mean it always will be an integer.

We say here that p and q are bound, but n is free. A statement can’t have
a true/false value unless all of the variables are bound.

5



Order of Operations, Interaction with ¬
For order of operations, the typically (but not universal) convention is like
this:

¬,∧,∨,∀,∃,⇒, ⇐⇒
Sometimes we will want to work with the negation of some statement, i.e.

¬∀x ∈ S, P (x)

This can be a difficult statement to work with.

It is sometimes preferable to “push” the negation to apply directly to the
predicate P (x), and then we can apply logical equivalencies to simplify it
further, much like how in arithmetic it is convenient to cancel out factors of
-1.

If the original statement is “Everything in this set has this property”, what
is the negation of that (what statement will always have the opposite truth
value?)

¬∀x ∈ S, P (x)

becomes:
∃x ∈ S,¬P (x)

or in other words, “There is at least one thing in the set that does not have
this property”.

We can do the a similar thing if we are negating an existential statement:

¬∃x ∈ S, P (x)

becomes
∀x ∈ S,¬P (x)

And this applies recursively to any further quantifiers used in P (x).

6


