
1 Sets (Appx. B.1, B.2, B.3 from Cormen)

From the lectures on predicates, we have this informal definition of sets:

Definition 1.1. A set is a collection of distinct objects, called elements.
To indicate that x is an element of set S, we write x ∈ S.

Our goal in these lectures will be to more precisely define sets and define
some useful operations we can perform on sets.

Creating sets

The conventional notation for a set is to list the elements inside braces, like
this:

{1, 2, 3}
which give us the set containing 1, 2, and 3.

For larger or infinite sets, we can define them by listing enough elements to
establish a pattern, such as

{0, 1, 2, . . . , 10}

being the set of integers from 0 to 10 and

{0, 1, 2, . . .}

being the set of natural numbers.
For more complicated sets, the “pattern recognition” kind of set definition is
not sufficient.

{0, 1, 2, 3, 5, 8, . . .}
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In these cases, we use set builder notation. For this, we use one of the following
formats:

S1 = {x : P (x)}
or

S2 = {x ∈ S : P (x)}
where S is some set and P (x) is a predicate.

We can think of this as a sort of iterative structure:

the part before the colon is a variable declaration, and the predicate P (x) is
a test that the variable must pass to be included in the set being defined.

{x ∈ N : x > 3}
So in the case of S1, we think of x as a variable that takes on all possible
values as we iterate, and those values for which P (x) is true are included in
the set S1.

In S2, the variable x is restricted to just elements of the set S, and we test
each element with the predicate P (x) to see which are included in the set S2

being defined.

Axiomatic set theory

Although a recent development, since their conception in the late 1800s set
have become nearly universally used as the foundational grounding of all
mathematics.

This has motivated significant research into making our definition of sets
paradox free while maintaining their expressive power.
With the naive definition of sets we give above, the following rule for the
definition of sets might seem reasonable (but is it a bad rule)

Axiom 1.2. Schema of Comprehension (false). If φ is a predicate,
then there exists a set Y = {x : φ(x)}.

To see the problem here, consider this:
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Observation 1.3. Consider the set S whose elements are all those (and only
those) sets that are not members of themselves, i.e.

S = {X : X 6∈ X}

Question: Is S a member of S?

If S ∈ S then S is not a member of S and therefore S 6∈ S .

If S 6∈ S then S is a member of S and therefore S ∈ S.

In either case, we have a contradiction.

This is known as Russell’s Paradox, and leads us to the conclusion that
{X : X 6∈ X} is not a set. So we need to be more careful about how we
define what is and is not a set.
To fix this paradox, instead of using the Axiom Schema of Comprehension
mathematicians use this:

Axiom 1.4. Schema of Separation. If φ is a predicate, then for any set
X there exists a set Y = {x ∈ X : φ(x)}.

The key difference here is that the ASoC allows picking elements from some
paradoxical set of all sets. The ASoS only allows building sets from other
known sets.

Axioms and operations on sets

We will not go into the full formal axiomization of sets. Instead, we will
discuss some useful axioms and useful operations on sets that produce new
sets.

Axiom 1.5. Let X and Y be sets. We say X = Y are equal when they have
all the same elements, i.e. when

∀u(u ∈ X ⇐⇒ u ∈ Y )

Definition 1.6. For any set X, we say |X| to denote the cardinality of X,
i.e. the number of elements in X.
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Definition 1.7. We use ∅ to denote the unique set containing no elements.
We call ∅ the empty set.

Definition 1.8. For any sets X, Y we say X ⊆ Y (X is a subset of Y ) when

∀x(x ∈ X ⇒ x ∈ Y )

Definition 1.9. For any sets X, Y we say X ⊂ Y (X is a proper subset of
Y ) when

(X ⊆ Y ) ∧ (X 6= Y )

Please note: Some sources may use ⊂ to mean ⊆! It is becoming uncommon
in modern sources, but older texts and papers do this often. It is important
to pay attention to the definitions given in the source you are working with.

Axiom 1.10. For any sets X, Y , there exists a set Z = X ∪ Y , the union of
X and Y , and

∀u(u ∈ Z ⇐⇒ u ∈ X ∨ u ∈ Y )

Definition 1.11. For any sets X, Y , there exists a set Z = X ∩ Y , the
intersection of X and Y , and

Z = {u ∈ X : u ∈ Y }

Why is this a definition and not an axiom?
We can get it from the Axiom of Scheme Separation from before, no need to
introduce extra axioms.

Definition 1.12. For any sets X, Y , there exists a set Z = X \ Y , the
difference of X and Y , and

Z = {u ∈ X : u 6∈ Y }

Definition 1.13. For any sets X, Y , there exists a set Z = X × Y , the
cartesian product of X and Y , and

Z = {(u, v) : u ∈ X ∧ v ∈ Y }

where (u, v) is an ordered pair.
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Exercise: Suppose I have sets X, Y and |X| = n, |Y | = m. Then we can
say |X × Y | = n ∗m?

Axiom 1.14. For any set X there exists a set Z = Pow(X), the power set
of X, and

Z = {u : u ⊆ X}

Exercise: Suppose I have set X and |X| = n. Then what can you say about
|Pow(X)|?

In the most popular axiomization of set theory (called ZFC) there are 5 more
axioms. We do not need these axioms unless we intend to do an intensive
study of the foundation of mathematics.
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