
1 Sorting Algorithms

A sorting algorithm is any algorithm which solves this problem:
Input: A sequence of n numbers a1, a2, . . . , an
Output: A permutation a′1, a

′
2, . . . , a

′
n of the input sequence such that a′1 ≤

a′2 ≤ . . . ≤ a′n.

1.1 Comparison Sorts

First, let’s consider the insertion sort algorithm. Let A be an array of values
we want sorted, and A is indexed from 1 to n.
InsertionSort(A)
for j = 2 to A.length

key = A[j]
i = j − 1
while i > 0 and A[i] > key

A[i + 1] = A[i]
i = i− 1

A[i + 1] = key

First, think about correctness.

To really understand why InsertionSort is correct, we introduce the idea of a
loop invariant - a property that is true at the beginning of ever iterations of
the for loop:

At the start of each iteration of the for loop, the subarray
A[1 . . . j−1] contains all the elements of the original A[1 . . . j−1]
in sorted order.

After correctness, we want to think about running time.
With some thought, it is easy to see that InsertionSort does not perform the
same number of steps for every input.
Therefore, instead of analyzing the running time of InsertionSort, we will
analyze the running time in the best and worst cases for InsertionSort.

Best Case: A is already sorted. Then the while loop never runs, because
the A[i] > key condition always fails. Thus, the running time of InsertionSort

1



for an already sorted list is Θ(n).

Worst Case: If A comes to us sorted in reverse order, then the while loop
will run the maximum number of times in each iteration of the for loop.
In this case, the running time will be

n∑
j=2

j−1∑
i=1

1 =
n∑

j=2

(j − 1) =
n∑

j=2

j −
n∑

j=2

1 =
n∑

j=2

j − (n− 1) =
n∑

j=1

j − 1− (n− 1)

=
n(n + 1)

2
− 1− (n− 1)

Therefore, the running time of InsertionSort for a list in reverse sorted order
is Θ(n2).

2



Next, we consider the merge sort algorithm.
MergeSort(A, p, r)
if p < r

q = bp+r
2 c

MergeSort(A, p, q)
MergeSort(A, q+1, r)
Merge(A, p, q, r)

Merge(A, p, q, r)
n1 = q − p + 1
n2 = r − q
let L,R be new arrays
for i = 1 to n1

L[i] = A[p + i− 1]
for j = 1 to n2

R[j] = A[q + j]
L[n1 + 1] =∞
R[n2 + 1] =∞
i = 1
j = 1
for k = p to r

if L[i] ≤ R[j]
A[k] = L[i]
i = i + 1

else
A[k] = R[j]
j = j + 1

MergeSort is an example of a divide-and-conquer algorithm:
Divide: Divide the n-element sequence into two subsequence of (roughly)
n/2 elements each.
Conquer: Sort the two subsequences recursively.
Combine: Merge the two sorted subsequence to get the complete sorted
sequence.

In this algorithm, the number of steps performed is the same for any list of
size n, so we do not need to the best/worst case analysis.

3



Since there is recursion, we will need to represent the running time through
a recurrence relation. We will let

T (n) = 2T (n/2) + n

T (1) = 1

represent the runnning time.

Note that this is not exactly right; unless n is a power of 2, we cannot evenly
split the list each time.

Therefore, the running time of MergeSort is

T (n) = 2T (n/2) + n

= 2[2T (n/4) + n/2] + n

= 2[2[2T (n/8) + n/4] + n/2] + n

= 2k+1T (n/2k+1) + (k + 1)n after k substitutions

= 2log2(n)−1+1T (n/2log2(n)−1+1) + (log2(n)− 1 + 1)n k ≈ log2(n)− 1

= 2log2(n)T (n/2log2(n)) + n log2(n)

= nT (1) + n log2(n)

= Θ(n log(n))

Insertion sort, merge sort, quicksort, heapsort, and probably any other sort-
ing algorithms you know are called comparison sorts, because they rely only
on comparing the relative order of pairs of elements to build the sorted output.

For any comparison sort (even ones no one has thought of yet), we can put
a lower bound on the running time:

Theorem 1.1. Any comparison sort algorithm requires Ω(n log(n)) compar-
isons in the worst case.

Proof. Suppose we have some comparison sort algorithm, i.e. for any input
sequence a1, a2, . . . , an we only use comparisons between elements to deter-
mine their relative order.

4



Without loss of generality, we may assume that all comparisions are of the
form ai ≤ aj, since all other comparisions =, <,>,≥ yield the same informa-
tion about the relative order of ai and aj.

For any value of n, we can build a decision tree that encodes the each possible
path of execution as a path from the root to a leaf node.

Lets consider the properties this decision tree must have:
(1) The tree must have a unique path for each possible output, therefore
there must be at least n! leaf nodes.
(2) If the tree has height h, then since it is a binary tree it has at most 2h

leaf nodes.

Therefore, 2h ≥ n! and so h ≥ log2(n!) = Ω(n log(n)).

5



The height of the tree is Ω(n log(n)), so there exists at least one path from
root to leaf node of length Ω(n log(n)).
So there is some path of execution of our comparison sort that performs
Ω(n log(n)) comparisons.

6



1.2 Linear Time Sorting Algorithms

If we make some assumptions about the input, we can create sorting algo-
rithms that run in time Θ(n).
For example, for our input a1, a2, . . . , an lets assume that all ai are integers
between 0 and k.
This leads us to the Counting Sort algorithm:
CountingSort(A,B, k)
let C[0, . . . , k] be a new array, indexed from 0 to k
for i = 0 to k

C[i] = 0
for i = 1 to A.length

C[A[i]] = C[A[i]] + 1
for i = 1 to k

C[i] = C[i] + C[i− 1]
for i = A.length down to 1

B[C[A[i]]] = A[i]
C[A[i]] = C[A[i]]− 1

The first two for loops probably make sense, but you are probably wondering
why I have the last two for loops.
The last two for loops make this a stable sort - the relative order of the input
is preserved when possible.
For example, suppose our input was a1, a2, a3 where a1 = a3 < a2. Then
a1, a3, a2 or a3, a1, a2 would be valid outputs for a (non-stable) sort. But a
stable sort would guarantee to choose the a1, a3, a2 output, preserving the
relative order of a1 and a3.

7



Now lets consider the running time.
There are two parameters here that affect the running time, n and k, and we
cannot express one in terms of the other.

So our running time needs to be expressed in terms of both.

c1k + c2n + c3k + c4n = (c1 + c3)k + (c2 + c4)n ≤ (c1 + c2 + c3 + c4)(n + k)

c1k + c2n + c3k + c4n = (c1 + c3)k + (c2 + c4)n ≥ (n + k)

We can find the running time by adding up the time of each for loop, so the
running time is Θ(n + k).

So as long as k = O(n), the running time of CountingSort is Θ(n).
Now, lets assume our input values each each have at most d digits, and con-
sider the Radix Sort algorithm:

RadixSort(A, d)
for i = 1 to d

use a stable sort to sort A on digit i (starting from least significant digit)

Lets use the counting sort algorithm above as our stable sort.
Then RadixSort runs in time

d · (running time of CountingSort)

so RadixSort runs in time Θ(d(n + k)).

If we are working in base 10, then each digit takes on values from 0 to 9, and
so k = 9, in which case RadixSort has running time Θ(dn).

8


