
1 Strongly Connected Components

In this section, we will be discussing only directed graphs. This is another
application of DFS.
Consider this problem:
Input: A directed graph G = (V,E)
Output: True/False is G “strongly connected”?

Definition 1.1. A directed graph is strongly connected if for any x, y ∈ V
there is a path from x to y and a path from y to x.

How can we tell if a graph is strongly connected or not?

The obvious ways to test if a graph is strongly connected or not is to run
BFS or DFS from each vertex, and see if there is a path connecting all pairs
of vertices.

Another way would be to compute the transitive closure of the graph.
These methods require time O(|V |2 + |V ||E|) and O(|V |3 log(|V |)), and it
might seem like this can’t be beat because we are testing whether or not all
pairs of vertices have this property.

However, we can solve this problem in time O(|V | + |E|) with the following
algorithm:

Strongly-Connected-Algorithm
Step 1: Pick a vertex v ∈ V and use DFS to check if every vertex can be
reached from v. If not, return false.
Step 2: Compute GT , the transpose graph of G.
Step 3: Do DFS in GT to check if every vertex can be reached from v. If not,
return false. Otherwise, return true.

Each step of this algorithm takes at most O(|V | + |E|) time, and so the
running time of the entire algorithm is O(|V |+ |E|).

1

I will outline here a proof of the correctness of the algorithm:

Proof. If the algorithm outputs “false” in step 1, it must have done so be-
cause there was some vertex unreachable from v, and so clearly the graph is
not strongly connected.

If the algorithm outputs “false” in step 3, there must be some vertex x un-
reachable from v in GT , which then means that in G there is no path from x
to v.

If the algorithm outputs “true”, then for any pair of vertices x and y, the
DFS algorithms must have found paths from v to x, from v to y, from x to
v, and from y to v.

These paths can be combined to find a path from x to y and a path from y
to x.

Most directed graphs will not be strongly connected, and so we often want
to consider the following notion of connectedness.

Definition 1.2. Let G = (V,E) be a directed graph. A strongly connected
component (SCC) of G is a maximal subset of vertices that induces a strongly
connected subgraph.

Some terms here probably need explaining.

By saying the subset is maximal, we mean that no additional vertices can be
added without breaking the “induces a strongly connected subgraph” prop-
erty.

For a set of vertices, the induced subgraph is the graph made by taking the
vertices of the set and all edges of G connecting those vertices.
Put simply, the strongly connected components of a graph are the “islands”
of connected vertices in the graphs.

2

Consider the following algorithm for finding the SSCs of a graph:
SCC-Algorithm-1
Step 1: Pick a vertex v ∈ V and use DFS to compute the following set:

Av = {u ∈ V : There is a path from v to u in G}

Step 2: Use DFS in GT to compute the following set:

Bv = {u ∈ V : There is a path from u to v in G}

Step 3: Av ∩ Bv is a SCC of G. Delete these vertices from G, and goto step
1 until all vertices have been deleted from G.

The since the graph could have |V | SCCs, the running time of this algorithm
is O(|V |2 + |V | · |E|)), which is quite slow. To improve on this, we need to
deepen out understanding of SCCs.
Given some graph G, suppose we construct a graph GSCC in this way:

GSCC has a vertex representing each SCC of G,

and any two vertices x, y of GSCC are connected by an edge from x to y if
there is an edge connecting a vertex of the SCC x represents to a vertex of
the SCC y represents.

GSCC has a property useful to us; it is acyclic, and therefore has a topological
sort.
This will be crucial in proving that the following algorithm works correctly:

3

SCC-Algorithm-2
Step 1: Do DFS on G, record the finishing times.
Step 2: Compute GT

Step 3: Do DFS on GT , processing vertices in descending order of finishing
times from step 1 (i.e. modify DFS so that whereever it arbitrarily selected
vertices it now selects vertices based on highest finishing times.)
Step 4: Identify the “trees” from step 3, i.e. delete all back, forward, and
cross edges identified by DFS in step 3. The trees are the connected compo-
nents that remain, and each tree is a SCC of G.

To prove the correctness of this algorithm, we will need the following lemmas
and definition:

Lemma 1.3. GSCC has a topological sort.

Proof. Assume there is a cycle in GSCC .
Let a1, a2, . . . , ak be the vertices in this cycle.
Let A1, A2, . . . , Ak ⊆ V be the SCCs associated with a1, a2, . . . , ak.
Then for all x, y ∈ A1 ∪A2 ∪ . . . ∪Ak there is a path from x to y and y to x
(just need to travel along the cycle).
So A1 is not maximal.
→←
So GSCC is acyclic.

4

Lemma 1.4. G and GT have the same SCCs.

Proof. For all vertices x and y, reversing the direction of the edges does not
change if there are or are not a paths from x to y and from y to x.

Definition 1.5. For W ⊆ V , let

start(W) = min
w∈W
{w.d}

finish(W) = max
w∈W
{w.f}

where discovery and finish are those parameters found by a particular instance
of DFS.

Lemma 1.6. Let C,C ′ be distinct SCCs of G, and suppose ∃(u, v) ∈ E where
u ∈ C and v ∈ C ′. Then finish(C) > finish(C ′).

Proof. First consider the case where start(C) > start(C ′), then the case
where Suppose start(C) < start(C ′).

5

Combining these lemmas, we can see why the algorithm works.

When we do DFS in step 1, the SCC at the beginning of the topological sort
of GSCC will have the highest finishing time.

So when we begin our DFS in step 3, we will start in the first SCC of the
topological sort and will be unable to escape this SCC, since the edges are
reversed in GT .

Since the SCCs of G are the same as the SCCs of GT , the DFS finds exactly
the vertices of the SCC.

When the DFS picks the next starting point, the exploration will again be
restricted to exactly one SCC, because of the change in direction of edges
and the SCCs that have already been discovered.

6

