1 Topological Sort

In this section, we will be discussing only directed graphs.

If $G = (V, E)$ is a directed graph, a **topological sort** of G is a one to one correspondence

$$
f: V \to \{1, 2, \ldots, |V|\}
$$

such that $f(v) < f(w)$ for all $(v, w) \in E$.

It is important to note that not all graphs have a topological sort. In fact, a graph has a topological sort if and only if the graph has no non-trivial cycles (the graph is acyclic).

Graphs that do have a topological sort may have a unique topological sort, or several valid topological sorts.

If we know the graph G is acyclic, the following algorithm will find a topological sort of G:

TopologicalSort1(G)

Call DFS(G) to compute the finishing time for each vertex Put the vertices in a list in reverse sorted order of the finishing time Return the list

We can prove the correctness of this algorithm in the following way:

Proof. Let $G = (V, E)$ be a directed, acyclic graph. Let $(v, w) \in E$. Need to show that after running DFS, $v.f > w.f$

Case 1: w is black when (v, w) is explored by DFS. So w.f is set and v.f is not, so when the algorithm finishes $v.f > w.f$.

Case 2: w is gray when (v, w) is explored by DFS. So (v, w) is a back edge, and so G has a cycle. But G is acyclic, so this cannot happen.

Case 3: w is white when (v, w) is explored by DFS. So v.f cannot be set until after w.f is set. So when the algorithm finished, $v.f > w.f.$ \Box We can rewrite our algorithm so that if G has a cycle, the algorithm correctly detects the cycle and reports that.

TopologicalSort2(G)

```
cycle = falsecount = 1for each v \in Vv.\text{color} = \text{white}for each v \in Vif v.color = white and \negcycle
           Visit(G, v)if cycle
     output true
Visit(G, v)v.\text{color} = \text{gray}for each w s.t. (v, w) \in Eif w\text{.color} = \text{grav}cycle = trueelse if w\text{-color} = white and \negcycle
          Visit(G, w)v.\text{color} = \text{black}v.count = count
count = count + 1
```