
1 Topological Sort

In this section, we will be discussing only directed graphs.
If G = (V,E) is a directed graph, a topological sort of G is a one to one
correspondence

f : V → {1, 2, . . . , |V |}
such that f(v) < f(w) for all (v, w) ∈ E.
It is important to note that not all graphs have a topological sort. In fact, a
graph has a topological sort if and only if the graph has no non-trivial cycles
(the graph is acyclic).
Graphs that do have a topological sort may have a unique topological sort,
or several valid topological sorts.
If we know the graph G is acyclic, the following algorithm will find a topo-
logical sort of G:

TopologicalSort1(G)
Call DFS(G) to compute the finishing time for each vertex
Put the vertices in a list in reverse sorted order of the finishing time
Return the list

We can prove the correctness of this algorithm in the following way:

Proof. Let G = (V,E) be a directed, acyclic graph.
Let (v, w) ∈ E.
Need to show that after running DFS, v.f > w.f

Case 1: w is black when (v, w) is explored by DFS.
So w.f is set and v.f is not, so when the algorithm finishes v.f > w.f .

Case 2: w is gray when (v, w) is explored by DFS.
So (v, w) is a back edge, and so G has a cycle. But G is acyclic, so this cannot
happen.

Case 3: w is white when (v, w) is explored by DFS.
So v.f cannot be set until after w.f is set. So when the algorithm finished,
v.f > w.f .

1

We can rewrite our algorithm so that if G has a cycle, the algorithm correctly
detects the cycle and reports that.

TopologicalSort2(G)
cycle = false
count = 1
for each v ∈ V

v.color = white
for each v ∈ V

if v.color = white and ¬cycle
Visit(G, v)

if cycle
output true

Visit(G, v)
v.color = gray
for each w s.t. (v, w) ∈ E

if w.color = gray
cycle = true

else if w.color = white and ¬cycle
Visit(G, w)

v.color = black
v.count = count
count = count + 1

2

