Circulation: Recall our live integral
we used to calculate work

$$W = \int \mp \cdot T ds$$

 $W = \int \mp \cdot T ds$
 $W = \int \mp (r(+)) \cdot r'(+) dt$
 $t = a$
moving
are object
along C

The definition of circulation looks really similar.

Det: let F be a continuous vector field
on a region D of R³ and let C be
a closed smooth oriented curve in D.
The circylation of F on C is
$$\int_{C} F \cdot T ds$$
 where T is the unit

Vector tangent to C consistent with the orientation. This looks almost exactly the same as our work integral, but I wanted to point out some of the differences. WOrk Circulation $f(r = \int F \cdot T ds$ $W = \int F \cdot T \, ds$ over here this This can just be has to be avertor a general continuous field representing Vector Field force Here, Cisa closed smooth Cisa smooth oriented cushe oriented curve Starts 3 ends at C_ Same point

Circulation of F along C is a measure of "how much the vector field points in the direction of C.

Determine whether the following are pos, neg, \bigcirc \bigcirc \bigcirc . $(1 - \sqrt{2}) (\sqrt{1}) \cos \Theta$

 $\beta = 90$

A=TT -

B	SF3.Tds	$\overline{}$
---	---------	---------------

Two circulation computations

EX! let Che the unit circle with countercloch wise orientation. Find the circulation on C of the following vector fields

a. $F = \langle x_{1}y_{1} \rangle$ (radial) b. $F = \langle -y_{1} \rangle \rangle$ (rotational)

$$= \int (\cos t, \sin t, 7 \cdot (-\sin t, \cos t, 7dt)) + 2\cos t, \sin t, 7 \cdot (-\sin t, \cos t, 7dt)$$

$$= \int (-\cos t, \sin t, t, \sin t, \cos t, 7dt) + 2\cos t, t = 0$$

$$= \int (-\cos t, \sin t, t, \sin t, \cos t, 7dt) + 2\cos t, t = 0$$

$$= \int (-5) + 2\cos t, \cos t, 7dt) + 2\cos t, t = 0$$

$$= \int (-5) + 2\cos t, \cos t, 7dt) + 2\cos t, t = 0$$

