Briggs/Cochran/Gillett Calculus for Scientists and Engineers Multivariable Study Card

Vectors and the Geometry of Space

Three-Dimensional Coordinate Systems

The distance between $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is The standard equation for the sphere of radius r and center (a, b, c) is $|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$

$$
(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2.
$$

Vectors

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle, \mathbf{v} = \langle v_1, v_2, v_3 \rangle, \text{ and } \mathbf{w} = \langle w_1, w_2, w_3 \rangle$ be vectors and *c* a scalar.

The magnitude or length of a vector **v** is $|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$. The vector with initial point $P = (x_1, y_1, z_1)$ and terminal point $Q = (x_2, y_2, z_2)$ is $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$.

Operations on Vectors

Addition: u + **v** = $\langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$ **Scalar multiplication:** $c\mathbf{u} = \langle c u_1, c u_2, c u_3 \rangle$

Dot Product: $\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3$

The angle
$$
\theta
$$
 between **u** and **v** is $\theta = \cos^{-1} \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} \right)$. Because

 $\cos \frac{\pi}{2} = 0$, we have that **u** and **v** are orthogonal or perpendicular if and only if $\mathbf{u} \cdot \mathbf{v} = 0$. Also, $\mathbf{u} \cdot \mathbf{u} = |u|^2$. The orthogonal projection of **u** onto **v** is proj_v $\mathbf{u} = \begin{pmatrix} \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \end{pmatrix}$ $\frac{u \cdot v}{v \cdot v}$ $\bigg)$ v.

Cross Product

$$
\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}
$$

= $(u_2v_3 - u_3v_2)\mathbf{i} - (u_1v_3 - u_3v_1)\mathbf{j} + (u_1v_2 - u_2v_1)\mathbf{k}$

Cross Product Properties

- 1. $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta = \text{area of parallelogram determined}$ by **u** and **v**.
- 2. $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u}), \mathbf{u} \times \mathbf{u} = 0$
- 3. **i** \times **j** = **k**, **j** \times **k** = **i**, **k** \times **i** = **j**
- 4. $\mathbf{u} \times \mathbf{v}$ is orthogonal to both **u** and **v**, therefore $\mathbf{u} \times \mathbf{v}$ is orthogonal to both **u** and
 $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$.

5.
$$
\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}
$$
 = volume of parallelepiped
determined by **u**, **v**, and **w**.

Vector-valued Functions and Motion in Space

Let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ be a vector function. Then $\mathbf{v}(t) = \frac{d\mathbf{r}}{dt}$ is the velocity vector and $|\mathbf{v}(t)|$ is the speed. The acceleration vector is $\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2}$. The unit tangent vector is $\mathbf{T} = \frac{\mathbf{v}}{|\mathbf{v}|}$ and the length of $\mathbf{r}(t)$ from $t = a$ to $t = b$ is *b*

$$
L = \int_a^b |\mathbf{v}| \, dt.
$$

Lines in Space

A vector equation of the line through $P_0(x_0, y_0, z_0)$ parallel to $\mathbf{v} = \langle a, b, c \rangle$ is $\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$, or $\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$, for $-\infty < t < \infty$. Parametric equations for this line are $x = x_0 + at, y = y_0 + bt, z = z_0 + ct, for $-\infty < t < \infty$.$

Formulas

Curvature:
$$
\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{1}{|\mathbf{v}|} \left| \frac{d\mathbf{T}}{dt} \right| = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3}
$$

Radius of Curvature: $\rho = \frac{1}{\kappa}$

Principal Unit Normal:
$$
\mathbf{N} = \frac{d\mathbf{T}/dt}{|dT/dt|}
$$

Tangential and normal scalar components of acceleration:

$$
\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}, \text{ where}
$$
\n
$$
a_T = \frac{d^2 s}{dt^2} = \frac{\mathbf{v} \cdot \mathbf{a}}{|\mathbf{v}|} \text{ and } a_N = \kappa |\mathbf{v}|^2 = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|}.
$$
\n
$$
\mathbf{v} \times \mathbf{a}
$$

Unit Binormal Vector: **B** = **T** \times **N** = $\frac{\mathbf{v} \times \mathbf{a}}{|\mathbf{v} \times \mathbf{a}|}$

Torsion:
$$
\tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N} = \frac{(\mathbf{v} \times \mathbf{a}) \cdot \mathbf{a}'}{|\mathbf{v} \times \mathbf{a}|^2}
$$

Planes and Surfaces in Space

Planes

The plane through $P_0(x_0, y_0, z_0)$ normal to $\mathbf{n} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ has vector equation:

 $\mathbf{n} \cdot \overrightarrow{P_{0}P} = 0$

component equation:

 $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

component equation simplified:

 $ax + by + cz = d$, where $d = ax_0 + by_0 + cz_0$

Quadric Surfaces

1. Ellipsoid:
$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
$$

\n2. Elliptic Paraboloid: $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
\n3. Elliptic Cone: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$
\n4. Hyperboloid of one sheet: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
\n5. Hyperboloid of two sheets: $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
\n6. Hyperbolic Paraboloid: $z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$

Partial Derivatives

To compute $\frac{\partial f}{\partial x}$, differentiate $f(x, y)$ treating *y* as a constant. $\frac{y}{\partial x}$

To compute $\frac{\partial f}{\partial x}$, differentiate $f(x, y)$ treating *x* as a constant. $\frac{y}{\partial y}$

Thus, if
$$
f(x, y) = y \cos xy
$$
, $\frac{\partial f}{\partial x} = -y^2 \sin xy$, and
\n $\frac{\partial f}{\partial y} = \cos xy - xy \sin xy$.

Notation

$$
\frac{\partial f}{\partial x} = f_x, \frac{\partial f}{\partial y} = f_y
$$

Chain Rule

To find *dz/dt*, start at *z* and read down each branch to *t*, multiplying derivatives along the way. Then add the products.

Gradient Vector

The gradient vector (gradient) of $f(x, y)$ at a point $P_0(x_0, y_0)$ is the vector

$$
\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}
$$

obtained by evaluating the partial derivatives of f at P_0 .

Directional Derivative

The directional derivative of f at (a, b) in the direction of unit vector **u** is

 $D_{\mathbf{u}} f(a, b) = \nabla f(a, b) \cdot \mathbf{u}.$

Plane Tangent to a Surface

The tangent plane at the point $P_0(a, b, c)$ on the level surface $F(x, y, z) = 0$ is the plane through P_0 normal to $\nabla F \mid_{P_0}$.

Tangent Plane for $F(x, y, z) = 0$ at $P_0(a, b, c)$

$$
F_x(P_0)(x - a) + F_y(P_0)(y - b) + F_z(P_0)(z - c) = 0
$$

Plane Tangent to a Surface $z = f(x, y)$

The plane tangent to the surface $z = f(x, y)$ at the point $(a, b, f(a, b))$ is

$$
z = f_x(a, b)(x - a) + f_y(a, b)(y - b) + f(a, b).
$$

Linearization

The linearization of a function $f(x, y)$ at a point (a, b) where *f* is differentiable is

$$
L(x, y) = f_x(a, b)(x - a) + f_y(a, b)(y - b) + f(a, b).
$$

Second Derivative Test for Local Extrema

Suppose that $f(x, y)$ and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that $f_x(a, b) = f_y(a, b) = 0$. Then

- **i.** *f* has a **local maximum** at (a, b) if $f_{xx} < 0$ and $f_{xx}f_{yy} - f_{xy}^2 > 0$ at (a, b) .
- **ii.** *f* has a **local minimum** at (a, b) if $f_{xx} > 0$ and $f_{xx}f_{yy} - f_{xy}^2 > 0$ at (a, b) .
- **iii.** *f* has a **saddle point** at (a, b) if $f_{xx}f_{yy} f_{xy}^2 < 0$ at (a, b) .
- **iv.** The test is inconclusive at (a, b) if $f_{xx}f_{yy} f_{xy}^2 = 0$ at (a, b) . In this case, we must find some other way to determine the behavior of *f* at (*a*, *b*).

Partial Derivatives (continued)

Lagrange Multipliers

One Constraint: Suppose that $f(x, y, z)$ and $g(x, y, z)$ are differentiable. To find the local maximum and minimum values of *f* subject to the constraint $g(x, y, z) = 0$, find the values of *x*, *y*, *z*, and λ that simultaneously satisfy the equations

$$
\nabla f = \lambda \nabla g
$$
 and $g(x, y, z) = 0$.

Two Constraints: For constraints $g(x, y, z) = 0$ and $h(x, y, z) = 0$, g and h differentiable, find the values of x, y, z, λ , and μ that simultaneously satisfy the equations

 $\nabla f = \lambda \nabla g + \mu \nabla h$, $g(x, y, z) = 0$, and $h(x, y, z) = 0$.

Multiple Integrals

Double Integrals as Volumes

When $f(x, y)$ is a positive function over a region *R* in the *xy*-plane, we may interpret the double integral of *f* over *R* as the volume of the 3-dimensional solid region over the *xy*-plane bounded below by *R* and above by the surface $z = f(x, y)$.

This volume can be evaluated by computing an iterated integral.

Let $f(x, y)$ be continuous on a region *R*.

1. If *R* is defined by $a \le x \le b$, $g_1(x) \le y \le g_2(x)$, with g_1 and g_2 continuous on [*a*, *b*], then

$$
\iint\limits_R f(x, y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) dy dx.
$$

2. If *R* is defined by $c \le y \le d$, $h_1(y) \le x \le h_2(y)$, with h_1 and h_2 continuous of [*c*, *d*], then

$$
\iint\limits_R f(x, y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) dx dy.
$$

Area via Double Integral

$$
A = \iint\limits_R dA = \iint\limits_R dx dy = \iint\limits_R dy dx
$$

Area in Polar Coordinates

$$
A = \iint\limits_R r \, dr \, d\theta
$$

Triple Integrals

$$
\iiint\limits_{D} f(x, y, z) dV = \int_{a}^{b} \int_{g(x)}^{h(x)} \int_{G(x, y)}^{H(x, y)} f(x, y, z) dz dy dx,
$$

where $D = \{(x, y, z): a \le x \le b, g(x) \le y \le h(x)\}$, $G(x, y) \leq z \leq H(x, y)$.

Cylindrical Coordinates (r, θ, z) Equations Relating Rectangular (x, y, z) and $Cylindrical (r, \theta, z) Coordinates$

$$
x = r \cos \theta
$$

\n
$$
y = r \sin \theta
$$

\n
$$
z = z
$$

\n
$$
r^2 = x^2 + y^2
$$

\n
$$
\tan \theta = y/x
$$

Triple Integrals in Cylindrical Coordinates

$$
\iiint\limits_{D} f(r, \theta, z) dV = \iiint\limits_{D} f(r, \theta, z) dz r dr d\theta
$$

Spherical Coordinates (ρ, φ, θ)

Equations Relating Spherical Coordinates to Cartesian and Cylindrical Coordinates

$$
x = r \cos \theta = \rho \sin \varphi \cos \theta
$$

$$
y = r \sin \theta = \rho \sin \varphi \sin \theta
$$

 $z = \rho \cos \varphi$

 $r = \rho \sin \varphi$ $\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{r^2 + z^2}$

Triple Integrals in Spherical Coordinates

$$
\iiint\limits_{D} f(\rho, \varphi, \theta) dV = \iiint\limits_{D} f(\rho, \varphi, \theta) \rho^{2} \sin \varphi \, d\rho \, d\varphi \, d\theta
$$

Change of Variables Formula for Double Integrals

$$
\iint\limits_R f(x, y) dy dx = \iint\limits_S f(g(u, v), h(u, v)) |J(u, v)| dA,
$$

where $x = g(u, v)$, $y = h(u, v)$ take region *S* onto region *R* and

$$
J(u, v) = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

is the Jacobian determinant.

Integration in Vector Fields

Line Integrals

- To integrate a continuous function $f(x, y, z)$ over a curve *C*:
- 1. Find a smooth parameterization of *C*,

$$
\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}, \quad a \le t \le b.
$$

2. Evaluate the integral as
\n
$$
\int_C f(x, y, z) ds = \int_a^b f(x(t), y(t), z(t)) |v(t)| dt,
$$
\nwhere $v(t) = \frac{d\mathbf{r}}{dt}$ and $ds = |v(t)| dt$.

Work

The work done by a force $\langle f, g, h \rangle$ over a smooth curve $\mathbf{r}(t)$ from $t = a$ to $t = b$ is

$$
W = \int_C \mathbf{F} \cdot \mathbf{T} ds = \int_a^b \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_a^b \mathbf{F} \cdot d\mathbf{r} =
$$

$$
\int_C f dx + g dy + h dz.
$$

Circulation

The circulation of **F** on *C* is $\oint_C \mathbf{F} \cdot \mathbf{T} ds$.

Flux

Flux of **F** across $C = \oint_C \mathbf{F} \cdot \mathbf{n} ds = \oint_C f dy - g dx$ where $\mathbf{F} = \langle f, g \rangle$ and **n** is outward pointing normal along *C*.

Conservative Vector Field

F is conservative if $\mathbf{F} = \nabla \varphi$ for some function $\varphi(x, y, z)$. If **F** is conservative, then

$$
\int_A^B \mathbf{F} \cdot d\mathbf{r}
$$

is independent of path and

$$
\int_A^B \mathbf{F} \cdot d\mathbf{r} = \varphi(B) - \varphi(A).
$$

Also,

$$
\oint_C \mathbf{F} \cdot d\mathbf{r} = 0
$$

around every closed curved *C* in this case.

Component Test for Conservative Fields

Let $\mathbf{F} = \langle f, g, h \rangle$ be a field whose component functions have continuous first partial derivatives on an open, simply connected region. Then **F** is conservative if and only if

$$
\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}, \quad \frac{\partial f}{\partial z} = \frac{\partial h}{\partial x}, \quad \text{and} \quad \frac{\partial g}{\partial z} = \frac{\partial h}{\partial y}.
$$

Green's Theorem

If *C* is a simple closed curve and *R* is the region enclosed by *C* then

$$
\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \oint_C f \, dy - g \, dx = \iint_R \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA
$$
\nOutward flux

\nDivergence integral

and

$$
\oint_C \mathbf{F} \cdot \mathbf{T} ds = \oint_C f dx + g dy = \iint_R \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA.
$$
\n
$$
\text{Counterclockwise circulation} \qquad \text{Curl integral}
$$

Green's Theorem Area Formula

Area of
$$
R = \oint_C x dy = -\oint_C y dx = \frac{1}{2} \oint_C (x dy - y dx).
$$

Surface Integrals

Let $\mathbf{r}(u, v) = \langle f(u, v), y(u, v), z(u, v) \rangle \ a \le u \le b, c \le v \le d$ be a parameterization of a surface *S*.

Let
$$
\mathbf{t}_u = \frac{\partial \mathbf{r}}{\partial u} = \left\langle \frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u} \right\rangle
$$
 and $\mathbf{t}_v = \frac{\partial \mathbf{r}}{\partial v} = \left\langle \frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v} \right\rangle$.

The unit vector normal to the surface is

$$
\frac{\mathbf{t}_u \times \mathbf{t}_v}{|\mathbf{t}_u \times \mathbf{t}_v|} = \mathbf{n}.
$$

Area

The area of the surface *S* is
$$
\int_{c}^{d} \int_{a}^{b} |\mathbf{t}_{u} \times \mathbf{t}_{v}| \, du \, dv.
$$

Integration in Vector Fields (continued)

Surface Integral

If $f(x, y, z)$ is defined over *S* then the integral of *f* over *S* is

$$
\iint_{S} f(x, y, z) dS =
$$
\n
$$
\int_{c}^{d} \int_{a}^{b} f(x(u, v), y(u, v), z(u, v)) |t_{u} \times t_{v}| dudv.
$$

Curl of a Vector Field

If $\mathbf{F} = \langle f, g, h \rangle$, then

$$
\text{curl } \mathbf{F} = \left(\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z}\right)\mathbf{i} + \left(\frac{\partial f}{\partial z} - \frac{\partial h}{\partial x}\right)\mathbf{j} + \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right)\mathbf{k}
$$
\n
$$
= \nabla \times \mathbf{F}.
$$

Divergence of a Vector Field

div $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}$ $\frac{\partial g}{\partial y} + \frac{\partial h}{\partial z}$ 0*z*

Stokes' Theorem

The circulation of a vector field $\mathbf{F} = \langle f, g, h \rangle$ around the boundary *C* of an oriented surface *S* in the direction counterclockwise with respect to the surface's unit normal vector **n** equals the integral of $\nabla \times \mathbf{F} \cdot \mathbf{n}$ over *S*.

$$
\oint_{\text{Counterclockwise}} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS
$$
\n
$$
\text{Counterclockwise}
$$
\n
$$
\text{Curl integral}
$$
\n
$$
\text{circular integral}
$$

Divergence Theorem

The flux of a vector field **F** across a closed oriented surface *S* in the direction of the surface's outward unit normal field **n** equals the direction of the surface's outward unit normal field **n** equals integral of $\nabla \cdot \mathbf{F}$ over the region *D* enclosed by the surface:

$$
\iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint\limits_{D} \nabla \cdot \mathbf{F} \, dV.
$$

Outward flux Divergence integral

Green's Theorem and Its Generalization to Three Dimensions

Circulation form of Green's Theorem:

$$
\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA
$$

Stokes' Theorem:

$$
\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS
$$

Flux form of Green's Theorem:

$$
\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_R \nabla \cdot \mathbf{F} \, dA
$$

Divergence Theorem:

$$
\iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint\limits_{D} \nabla \cdot \mathbf{F} \, dV
$$